
LFSA 2022

The Seventeenth International Workshop on
Logical and Semantic Frameworks, with Applications

September 23-24, 2022

https://lsfa2022.github.io/

Belo Horizonte, Brazil

https://lsfa2022.github.io/

II

Program Committee
Beniamino Accattoli Inria & École Polytechnique, France
Sandra Alves Universidade de Porto, Portugal
Carlos Areces UNC, Argentina
Mauricio Ayala Rincón Universidade de Brası́lia, Brazil
Haniel Barbosa UFMG, Brazil
Mario R. Folhadela Benevides UFF, Brazil
Alejandro Dı́az-Caro CONICET-Buenos Aires University and Quilmes University, Argentina
Amy Felty University of Ottawa, Canada
Pascal Fontaine (co-chair) University of Liège, Belgium
Edward Hermann Haeusler PUC-Rio de Janeiro, Brazil
Delia Kesner Université de Paris, France
Temur Kutsia RISC/JKU Linz, Austria
Bruno Lopes UFF, Brazil
Ian Mackie Polytechnique, France, and University of Sussex, UK
Alexandre Madeira Universidade de Aveiro, Portugal
Sérgio Marcelino Instituto de Telecomunicações, Portugal
Mariano Moscato National Institute of Aerospace, USA
Daniele Nantes (co-chair) Universidade de Brası́lia, Brazil
Vivek Nigam Huawei Munich Research Center, Germany
Carlos Olarte Université Sorbonne Paris Nord, France
Mateus de Oliveira Oliveira University of Bergen, Norway
Valeria de Paiva Topos Institute, Berkeley, USA
Alberto Pardo Universidad de la República, Uruguay
Elaine Pimentel University College London, UK
Giselle Reis CMU-Qatar, Qatar
Umberto Rivieccio UFRN, Brazil
Camilo Rocha Pontificia Universidad Javeriana - Cali, Colombia
Daniel Ventura Universidade Federal de Goiás, Brazil
Petrucio Viana UFF, Brazil

External reviewers
Andreas Lööw Imperial College London, UK
José Proença Polytechnic Institute of Porto, Portugal
Deivid Vale Radboud University Nijmegen, The Netherlands

III

Table of Contents

Extending the Quantitative Pattern-Matching Paradigm . 1
Sandra Alves, Delia Kesner and Miguel Ramos

Towards a Proof in Lean about the Horizontal Compression of Dag-Like Derivations in Minimal Purely
Implicational Logic . 8

Robinson Callou de Moura Brasil Filho, Jefferson de Barros Santos and Edward Hermann Haeusler

Paraconsistent Transition Systems . 24
Ana Cruz, Alexandre Madeira and Luı́s Soares Barbosa

ReLo: A Dynamic Logic to Reason about Reo Circuits . 37
Erick Grilo and Bruno Lopes

Analyzing Innermost Runtime Complexity Through Tuple Interpretations 55
Liye Guo, Deivid Vale

Equational Theorem Proving for Clauses over Strings . 69
Dohan Kim

Nominal Sets in Agda - a Fresh and Immature Mechanization . 87
Miguel Pagano, José E. Solsona

Tool Support for Interval Specifications in Differential Dynamic Logic 94
Jaime Santos, Alexandre Madeira and Daniel Figueiredo

A Formal Proof of the Strong Normalization Theorem for System T in Agda 101
Sebastián Urciuoli

© S. Alves & D. Kesner & M. Ramos
This work is licensed under the
Creative Commons Attribution License.

Extending the Quantitative Pattern-Matching Paradigm

Sandra Alves
DCC-FCUP & CRACS

University of Porto, Porto, Portugal
sandra@fc.up.pt

Delia Kesner
Université de Paris, CNRS, IRIF, France

Institut Universitaire de France (IUF), France
kesner@irif.fr

Miguel Ramos
DCC-FCUP & LIACC

University of Porto, Porto, Portugal
jmiguelsramos@gmail.com

1 Introduction

Pattern-matching is a programming technique that provides an efficient way of decomposing and pro-
cessing data, and is available in several modern programming languages and proof assistants. However,
the study of programming languages semantics is usually based on the λ -calculus and some of the prop-
erties of this calculus do not translate directly to languages with matching primitives. For this reason,
the study of the semantics of programming languages with pattern-matching features is usually based on
pattern-calculi instead, which are formal calculi equipped with built-in patterns [2, 6, 11, 12, 13]. One
such calculus is the pair pattern-calculus presented in [3], where the notion of λ -abstraction was gener-
alized to functions of the form λ p.t, where p is either a variable or a pair pattern specifying the expected
structure of their arguments. As an example, the term λ (x,y).x becomes a valid abstraction that expects a
pair of the form (t,u) as argument and yields the first projection t of the pair. Even though this language
is powerful enough to reason about some of the most interesting features of existing syntactical matching
mechanisms, its lack of general data constructors (such as the ones for lists and trees) and absence of
definition of functions by cases, leave this first approach far from being a realistic model for modern
programming languages.

Quantitative type systems have been independently introduced in the framework of the λ -calculus by
Gardner [9] and Kfoury [14], but the relevance of such systems regarding resource-aware consumption
investigations remained unnoticed until it was highlighted in [4] and in de Carvalho’s thesis in 2007 [7]
(see also [8]), when its relation with linear logic [10] and quantitative relational models was explored.
In [3], two resource-aware type systems for the pair pattern-calculus were presented. The first of those,
called System U , provides upper-bounds for the length of head normalization sequences plus the size of
their corresponding normal forms by means of a non-idempotent intersection type system.

In this paper, we present an extension of the pair pattern-calculus in [3] called κ-calculus. The
extension consists on generalizing the built-in pair patterns with constructor-based patterns and a more
sophisticated pattern-matching mechanism. We also provide a resource-aware type system based on
System U , that provides upper-bounds for the length of weak head-termination sequences of terms of
the κ-calculus, called System G . Our main result is that typing in G characterizes weak head-termination
for the terms in the κ-calculus. In fact, a term t is typable if and only if t is weak head-terminating, and
the number of nodes of the typing derivation tree bounds the number of steps of the evaluation sequence
of t.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

S. Alves & D. Kesner & M. Ramos 2

2 The κ-calculus

In this work, we further generalize the notion of λ -abstraction to functions of the form λk.m, where k is
a multi-pattern and m is a multi-term. Multi-patterns can be a single variable VxW or consist of a set of
distinct constructor patterns Vc1

→
p1, . . . ,cn

→
pnW that specifies, by cases, that the expected structure of

their arguments should be a constructor term matching one of the constructor patterns in it. Multi-terms
specify the set of continuations for a multi-pattern: each pattern ci

→
pi in the multi-pattern is assigned a

term ti, for 1 ≤ i ≤ n. As an example, the term λVp(x,y),t(x,y,z)W.Vy,yW expects either an argument of
the form p(t,u) or of the form t(t,u,w), and yields the second projection u of either constructor. The
sets of terms and list contexts of the κ-calculus are given by the following grammars:

(Multi-Patterns) k ::= VxW | Vc1
→
p1, . . . ,cn

→
pnW where n ≥ 1

(Patterns) p ::= x | c
→
p

(Multi-Terms) m ::= Vt1, . . . , tnW where n ≥ 1
(Terms) t,u ::= x | c

→
t | λk.m | tu | t[p\u]

(List Contexts) L ::= □ | L [p\t]

where x,y,z, . . . range over a countable set of variables, every pattern p is assumed to be linear (i.e.,
every variable appears at most once in p), and top-level constructors of multipatterns are pairwise
distinct, i.e., for a multi-pattern Vc1

→
p1, . . . ,cn

→
pnW, then ci ̸= cj for 1 ≤ i, j ≤ n and i ̸= j.

Whenever we write c
→
t (resp. c

→
p), we assume that the length of

→
t (resp.

→
p) matches the arity of c.

Finally, we are going to assume that every function λk.m consists of a multi-pattern k and a multi-term m
with the same lengths. As usual, terms are considered modulo α-conversion. Given a list context L and
a term t, L ⟨t⟩ denotes the term obtained by replacing the unique occurrence of □ in L by t, possibly
allowing the capture of free variables of t.

The operational semantics of the κ-calculus is an extension of the well-known notion of weak head
reduction for the λ -calculus [1] and is given by relation →wh in Figure 1. Given the one-step reduc-
tion relation →wh, we use →k

wh (k ≥ 0) to denote the reflexive-transitive closure of →wh, in fact, more
specifically, the composition of k wh-steps.

dlc(L)∩fv(u) = /0
(βabs)

L ⟨λVxW.VtW⟩u →wh L ⟨t[x\u]⟩

dlc(L)∩fv(ci
→
u) = dlc(L ′)∩fv(ti) = /0

(βcase)
(L ⟨λVc1

→
p1, . . . ,cn

→
pnW.Vt1, . . . , tnW⟩)(L ′⟨ci

→
u ⟩)→wh L ′(L ⟨ti

→
[pi\u]⟩) (1 ≤ i ≤ n)

(es)
t[x\u]→wh t{x\u}

dlc(L)∩fv(t) = /0
(match)

t[c
→
p \L ⟨c →

u ⟩]→wh L ⟨t
→

[p\u]⟩

t →wh t ′ ¬isfun(t)
tu →wh t ′u

t →wh t ′

t[p\u]→wh t ′[p\u]
t ̸→wh u →wh u′ p ̸= x

t[p\u]→wh t[p\u′]

Figure 1: Weak Head Reduction Strategy

S. Alves & D. Kesner & M. Ramos 3

We use t{x\u} to denote the meta-level substitution operation that replaces all the free occurrences
of x in t by the term u. We use the predicate isfun(t) when t is of the form L ⟨λk.m⟩. When matching a
term of the form c

→
t (such that

→
t = (t1, . . . , tn)) with a pattern of the form c

→
p (such that

→
p= (p1, . . . , pn)),

we are going to write
→

[p\t] for [p1\t1] · · · [pn\tn]. We write var(p) (resp. var(Vc1
→
p1, . . . ,cn

→
pnW)) to

denote the set of variables in the pattern p (resp. multi-pattern Vc1
→
p1, . . . ,cn

→
pnW). The domain of a

list context is defined as dlc(□) = /0 and dlc(L [p\u]) = dlc(L)∪var(p).
Rule (βabs) fires the computation of terms by transforming the application of an abstraction with

a variable multi-pattern to a term, into a closure of the single continuation. Rule (βcase) does implicit
case analysis by pattern-matching and fires the computation of term by transforming the application of
an abstraction with a non-variable multi-pattern to a constructor, into a closure of the continuation of
that matched pattern. Decomposition of patterns and terms is performed by means of (match), when
a constructor pattern is matched against a constructor term. Substitution if performed by rule (es), i.e.,
an explicit (simple) matching of the form [x\u] is executed. This form of syntactic pattern matching is
very simple and does not consider any kind of failure rules, but it is expressive enough to specify the
well-known mechanism of matching. Context closure is similar to the λ -calculus case, but not exactly
the same. Indeed, reduction is performed on the left-hand side of applications and closures whenever
possible. Otherwise, arguments of explicit matching operators must be reduced in order to unblock these
operators, i.e., in order to decompose [p\u] when p is a constructor pattern but u is still not a constructor.
Notice, however, that when u is already a constructor, reduction inside u cannot take place at all, thus
implementing a kind of lazy strategy for pattern matching.

Some ill-formed terms are neither redexes nor a desired result for a computation: applying a con-
structor to a term (L ⟨c

→
t ⟩) u; applying a function of the form L ⟨λVc1

→
p1, . . . ,cn

→
pnW.m⟩ to a construc-

tor of the form L ′⟨c
→
t ⟩, such that c ̸= ci for 1 ≤ i ≤ n; applying a function of the form L ⟨λVc1

→
p1

, . . . ,cn
→
pnW.m⟩ to another function; matching a pattern of the form c

→
p with a constructor of the form

c′
→
t , such that c ̸= c′; matching a pattern of the form c

→
p with a function. We call these ill-formed terms

clashes and say that a term is clash-free if it does not weak head-reduce to a term containing a clash. A
rewriting system raising a warning (i.e., a failure) when detecting a head-clash has been defined in [5].
This allowed the authors to focus on the set of head-clash-free normal forms. In this work, the set of
clash-free normal forms, which serves the same purpose, is described by the following grammars:

(Clash-Free Normal Forms) F ::= λk.m | c
→
t | F [c

→
p \N] | N

(Neutral Clash-Free Normal Forms) N ::= x | N t | N [c
→
p \N]

We say that t is weak head-terminating if there exists a clash-free normal form u ∈ F and an integer
k ≥ 0 such that t →k

wh u.

Example 2.1. In the following example, we start by reducing the argument until we reach a constructor
and only then do we match the argument and continue from there:

(λVc(x,y)W.VxW)((λVxW.VxW)(c(x′,y′))) →wh (λVc(x,y)W.VxW)(x[x\c(x′,y′)])
→wh (λVc(x,y)W.VxW)(c(x′,y′)) →wh x[x\x′][y\y′]
→wh x[x\x′] →wh x′

In the next example, we have a function that accepts products and triples, and returns the second projec-

S. Alves & D. Kesner & M. Ramos 4

tion for both. It is being applied to a triple:

(λVp(x,y),t(x,y,z)W.Vy,yW)(t(x′,y′,z′)) →wh y[x\x′][y\y′][z\z′]
→wh y[x\x′][y\y′] →wh y′[x\x′]
→wh y′

Lastly, note that we cannot construct an abstraction of the form λVc
→
p,c

→
qW.Vt,uW, since we require

top-level constructors to be pairwise distinct. But, we can have pattern-matching failures that are not
caught at the top-level:

(λVc1(c2(x,y),z)W.VyW)(c1(c3(x′,y′),z′)) →wh y[c2(x,y)\c3(x′,y′)][z\z′]
→wh y[c2(x,y)\c3(x′,y′)] ̸→wh

However, this failure is due to a clash, which means that (λVc1(c2(x,y),z)W.VyW)(c1(c3(x′,y′),z′)) is
not weak head-terminating.

3 Type System G

In this work, we present a quantitative type system, called G , that extends System U to constructor types
and uses the size of arbitrary type derivations to reason about time (length of evaluation sequences) and
space (size of normal forms). More precisely, we will rely on the fact that, when t weak head-reduces
to t ′, the size of the type derivation of t ′ will be smaller than that of t, thus the size of type derivations
will provide us an upper-bound for the length of the normalization sequence for t plus the size of the its
normal forms. The set of types is described by the following grammars:

(Constructor Types) C ::= c
→
A

(Types) σ ::= • | C | A → σ

(Multiset Types) A ::= [σi]i∈I

Note that, because we include the constructor name c in each constructor type c
→
A , each constructor

term will be assigned a unique constructor type matching its own constructor name. Whenever we write
c

→
A , we are going to assume that the length of

→
A matches the arity of c.

The typing system of the language is described in Figure 2 and can be seen as an extension of System
U [3]: on the one hand we consider generic constructors, and on the other hand we integrate an extended
notion of abstraction that is able to define functions by cases. We use Φ▷Γ ⊢ t : σ (resp. Φ▷Γ ⊢ t : A)
to denote term type derivations ending with the sequent Γ ⊢ t : σ (resp. Γ ⊢ t : A), and Π▷Γ ⊩ p : A to
denote pattern type derivations ending with the sequent Γ ⊩ p : A . The size of a derivation Φ, denoted
by sz(Φ), is the number of all the typing rules used in Φ, except (many) and (match), which are not
counted.

Most of the rule for terms are straightforward. Rule (absk) is used to type functions in general. But,
when (absk) is used to type a case function, the type of the whole function is the type of any one of its
cases, i.e., not all of its cases need to be typable in order to type the whole case function. Rule (match)
is used to type the explicit matching operator t[p\u] and can be seen as a combination of rules (app) and
(absk). Rule (patv) is used when the pattern is a variable x, and its multiset type is the type declared for
x in the typing context. Rule (patc) is used when the pattern has a constructor type, which means that the
pattern will be matched with a constructor. Rules (constC) and (absC) are used to type normal forms,
when these are constructors and abstractions. Finally, note that when assigning types (multiset types) to
terms, we only allow the introduction of multiset types on the right through the (many) rule.

S. Alves & D. Kesner & M. Ramos 5

Example 3.1. In the following example, a typing derivation Φ for the first term in Example 2.1 is built.
Let Φ1 be the following type derivation:

(ax)
x : [σ] ⊢ x : σ

(patv)
x : [σ] ⊢ x : [σ]

(patv)
y : [] ⊢ x : []

(patc)
x : [σ],y : [] ⊢ c(x,y) : [c([σ], [])]

(absk)
/0 ⊢ λVc(x,y)W.VxW : [c([σ], [])]→ σ

Let Φ2 be the following type derivation:
(ax)

x : [c([σ], [])] ⊢ x : c([σ], [])
(patv)

x : [c([σ], [])] ⊩ x : [c([σ], [])]
(absk)

/0 ⊢ λVxW.VxW : [c([σ], [])]→ c([σ], [])

And Φ3 be the following type derivation:

Φ2

(ax)
x′ : [σ] ⊢ x′ : σ

(many)
⊢ y′ : []

(const)
x′ : [σ] ⊢ c(x′,y′) : c([σ], [])

(many)
x′ : [σ] ⊢ c(x′,y′) : [c([σ], [])]

(app)
x′ : [σ] ⊢ (λVxW.VxW)(c(x′,y′)) : c([σ], [])

(many)
x′ : [σ] ⊢ (λVxW.VxW)(c(x′,y′)) : [c([σ], [])]

Then we can construct Φ as follows:

Φ1 ▷ /0 ⊢ λVc(x,y)W.VxW : [c([σ], [])]→ σ Φ3 ▷ x′ : [σ] ⊢ (λVxW.VxW)(c(x′,y′)) : [c([σ], [])]
(app)

x′ : [σ] ⊢ (λVc(x,y)W.VxW)((λVxW.VxW)(c(x′,y′))) : σ

But, note that we cannot construct a type derivation for the last term in Example 3.1. Let Φ1 now be the
following type derivation:

(ax)
y : [σ] ⊢ y : σ

(patv)
x : [] ⊩ x : []

(patv)
y : [σ] ⊩ y : [σ]

(patc)
y : [σ] ⊩ c2(x,y) : [c2([], [σ])]

(patv)
z : [] ⊩ z : []

(patc)
y : [σ] ⊩ c1(c2(x,y),z) : [c1([c2([], [σ])], [])]

(absk)
/0 ⊢ λVc1(c2(x,y),z)W.VyW : [c1([c2([], [σ])], [])]→ σ

And Φ2 be the following type derivation:

(many)
⊢ x′ : []

(ax)
y′ : [σ] ⊢ y′ : σ

(many)
y′ : [σ] ⊢ y′ : [σ]

(const)
y′ : [σ] ⊢ c3(x′,y′) : c3([], [σ])

(many)
⊢ z′ : []

(const)
y′ : [σ] ⊢ c1(c3(x′,y′),z′) : c1(c3([], [σ]), [])

(many)
y′ : [σ] ⊢ c1(c3(x′,y′),z′) : [c1(c3([], [σ]), [])]

Note that we cannot construct a type derivation for the aforementioned term, because the type of the
argument will never match the type of the term expected by the function.

We now state the main result of this work as the following theorem.

Theorem 3.1 (Characterization of Weak Head Termination and upper-bounds). Let t be a term in the
pattern-calculus. Then t is typable in system G iff t is weak head-terminating. Moreover, if Φ▷Γ ⊢ t : σ ,
then the weak head strategy terminates on t in at most sz(Φ) steps.

We will simply present a sketch of the proof, since we are omitting the necessary lemmas that are
needed in order to present the whole proof.

S. Alves & D. Kesner & M. Ramos 6

(patv)
x : A ⊩ x : A

(Γi ⊩ pi : Ai)1≤i≤n c(p1, . . . , pn) is linear
(patc)∧

1≤i≤n Γi ⊩ c(p1, . . . , pn) : [c(A1, . . . ,An)]

(ax)
x : [σ] ⊢ x : σ

(constC)
/0 ⊢ c(t1, . . . , tn) : •

(Γi ⊢ ti : Ai)1≤i≤n (const)∧
1≤i≤n Γi ⊢ c(t1, . . . , tn) : c(A1, . . . ,An)

(absC)
/0 ⊢ λVp1, . . . , pnW.Vt1, . . . , tnW : •

Γk ⊢ tk : σk Γk|pk ⊩ pk : Ak (absk)
Γk\\var(pk) ⊢ λVp1, . . . , pnW.Vt1, . . . , tnW : Ak → σk (1 ≤ k ≤ n)

Γ ⊢ t : A → σ ∆ ⊢ u : A (app)
Γ∧∆ ⊢ tu : σ

(Γi ⊢ t : σi)i∈I (many)∧
i∈I Γi ⊢ t : [σi]i∈I

Γ ⊢ t : σ Γ|p ⊩ p : A ∆ ⊢ u : A
(match)

(Γ\\var(p))∧∆ ⊢ t[p\u] : σ

Figure 2: Typing System G

Proof. The implication (⇒) holds by weighted subject reduction. That is, by the fact that if for two
typable terms t,u, if t →wh u, the size of the type derivation of u is strictly smaller than the size of
the type derivation of u. The implication (⇐) holds by the typability of clash-free normal forms and
weighted subject expansion. That is, by the fact that if u ∈ F , then u is typable. And for another typable
t such that t →wh u, then the size of the type derivation of u is strictly smaller than the size of the type
derivation of t.

4 Future Work

In this paper, we have presented a pattern-calculus named κ-calculus that extends the λ -calculus with
constructors and pattern-matching, and a resource-aware type system named G that provides upper-
bounds for the length of weak head-termination sequences. In the future, we would like to explore
the use of tight typings to provide exact bounds to the length of evaluation sequences and the size of
normal forms. Additionally, we would like to extend this calculus to programs with recursive schemes
that would allow us to not only define but also process recursive data structures such as lists and trees.
Last, but not least, we expect this language to provide a good model for the study of AC-properties of
pattern-matching for functional programming languages with built-in pattern-matching.

S. Alves & D. Kesner & M. Ramos 7

References
[1] Samson Abramsky. The Lazy Lambda Calculus, page 65–116. Addison-Wesley Longman Publishing Co.,

Inc., USA, 1990.
[2] Sandra Alves, Besik Dundua, Mário Florido, and Temur Kutsia. Pattern-based calculi with finitary matching.

Logic Journal of the IGPL, 26(2):203–243, December 2017.
[3] Sandra Alves, Delia Kesner, and Daniel Ventura. A Quantitative Understanding of Pattern Matching. In

Marc Bezem and Assia Mahboubi, editors, 25th International Conference on Types for Proofs and Programs
(TYPES 2019), volume 175 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:36,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[4] Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. A semantics for lambda calculi with resources.
Mathematical Structures in Computer Science, 9(4):437–482, 1999.

[5] Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Observability for pair pattern calculi.
2015.

[6] H Cirstea. The rewriting calculus - part i. Logic Journal of IGPL, 9(3):339–375, May 2001.
[7] Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. 2007.
[8] Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and intersection types.

CoRR, abs/0905.4251, 2009.
[9] Philippa Gardner. Discovering needed reductions using type theory. In TACS, 1994.

[10] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
[11] Barry Jay and Delia Kesner. First-class patterns. Journal of Functional Programming, 19(2):191–225, March

2009.
[12] Wolfram Kahl. Basic pattern matching calculi: a fresh view on matching failure. In Functional and Logic

Programming, pages 276–290. Springer Berlin Heidelberg, 2004.
[13] Delia Kesner, Carlos Lombardi, and Alejandro Rı́os. A standardisation proof for algebraic pattern calculi.

Electronic Proceedings in Theoretical Computer Science, 49:58–72, February 2011.
[14] A. Kfoury. A linearization of the lambda-calculus and consequences. Journal of Logic and Computation,

10(3):411–436, June 2000.

© R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler
This work is licensed under the
Creative Commons� Attribution� License.

Towards a proof in Lean about the
Horizontal Compression of Dag-Like Derivations in

Minimal Purely Implicational Logic

Robinson Callou de Moura Brasil Filho
Informatics PUC-Rio
Rio de Janeiro, Brazil

rfilho@inf.puc-rio.br

Jefferson de Barros Santos
EBAPE/FGV

Rio de Janeiro, Brazil
jefferson.santos@fgv.br

Edward Hermann Haeusler
Informatics PUC-Rio
Rio de Janeiro, Brazil

hermann@inf.puc-rio.br

In this article, we argue that a dag-like proof can be obtained by compressing Natural Deduction
proofs of tautologies in purely implicational minimal logic (M⊃). We call these dag-like proofs as
DLDS, for Dag-Like Derivability Structure. After compression, the size of a resulting dag-like proof
Π of an M⊃ tautology α is O(h.m4), where h is the height of Π and m is the size of the set of all M⊃
formulas occurring in Π. We call the compression algorithm as HC, for the horizontal (left-to-right)
compression procedure we applied. This procedure follows a horizontal collapse from one valid
DLDS to another, via a finite set of compression rules. As of the writing of this article, there are a
total of 26 compression rules in HC, each with its own conditions. Because of this high number of
rules and definitions, the manual and detailed proofs of some properties of HC, such as the fact that
it preserves the soundness of the tree-like proofs or that it halts for every DLDS entry, is not easy to
follow. The main purpose of this article is to present some properties of HC and the beginnings of
a Lean-assisted proof showing that HC halts for every M⊃ tautology, exiting a valid DLDS with no
two equal nodes (vertexes) on the same level.

1 Introduction

Under the standard terminology of proof theory, a mathematical proof in Natural Deduction is a deriva-
tion without open assumptions. Each of its hypotheses must be discharged by applying a specific rule. In
the case of purely implicational minimal logic (M⊃), the only rules applicable are the ⊃-Introduction (or
⊃-Intro) and ⊃-Elimination (or ⊃-Elim) rules. These Natural Deduction rules of M⊃ are shown below,
according to [6]:

[A]
...
B ⊃-IntroductionA⊃ B

A A⊃ B ⊃-EliminationB

In [4], the authors provide an algorithm, named HC, for obtaining a compressed dag-like proof, meaning
a proof represented by a Directed Acyclic Graph, of any purely implicational minimal tautology. This
dag-like proof has more decoration elements and labels than regular proofs in purely implicational min-
imal logic (M⊃) and, using these elements, a verification that the dag-like proof is valid can be done in

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 9

polynomial time [4]. The authors named this type of dag-like proof a Dag-Like Derivability Structure
(DLDS), which is defined in [4] and also in accordance to the following definitions below, which we
write down here in order to have a more self-contained document.
In any M⊃ Natural Deduction derivation, any application of an ⊃-introduction rule has some kind of
mechanism to indicate which formula occurrences are discharged by the application of this⊃-introduction
application. One way to formalize this indication is to add edges (discharging edges) linking the conclu-
sion of the rule application to each discharged formula occurrence in the derivation tree that represents
the Natural Deduction derivation1. This may be a convenient representation in many formulations of
Natural Deduction. However, in order to not crowd our dag-like derivations with unnecessary edges, we
drop out the discharging edges by assigning to each deduction edge the string of bits that represents the
set of assumptions from which the formula that labels the target of this deduction edge depends on. This
is formalized in the sequel.

➤ Definition 1: Let α be an implicational formula, Sub(α) the set of subformulas of α , and O(α) =
{β0,β1, . . . ,βk} a linear ordering on Sub(α). A bit-string on O(α) is any string b0b1 . . .bk, such
that bi ∈ {0,1}, for each i = 0,1, . . . ,k.

There is a bijective correspondence between bit-strings on O(α) and sets of subformulas of α , given by
Set(b0b1 . . .bk) = {βi/bi = 1}. The bit-string on O(α) will be used to drop out the discharging edges and
make explicit the information on formula dependencies in a derivation. The set of bit-strings on O(α) is
denoted by Bits(α,O(α)). The inverse function of Set is well-defined, for a fix ordering on Sub(α) and
is denoted by Set−1. The set of all bit-strings on a set S, under ordering OS is denoted by B(OS).
The following result shows that when considering a restricted form of ⊃-Introduction rules, the set of
theorems is not changed. This restricted form of an ⊃-Introduction is used to provide a sound way to
remove the discharging edges from the tree-like proofs.

➤ Definition 2: Consider a derivation Π of β having ∆ as assumptions. Let α ∈ ∆ be a (open)
formula assumption in Π. An application of an ⊃-Introduction in Π is greedy, if and only if, it
produces α ⊃ β as conclusion and discharges in Π every open occurrence of α from which its
premise β depends on.

An application of an ⊃-Introduction in a tree-like derivation is greedy, if and only if, its corresponding
application in a Natural Deduction derivation is also greedy. We reaffirm the terminology used in [6]
that a proof is a derivation that has no open assumption, i.e., all hypotheses are discharged by some
⊃-Introduction. The algorithm below modifies a given proof in M⊃ into a greedy proof in M⊃:

Algorithm 1 Greedy Proof Conversion
Require: A proof Π in M⊃, where n is the level of the highest branch in Π

1: j = n
2: while 0 < j do
3: for each branch B of level j in Π do
4: replace each intro-app downwards by a greedy intro-app
5: possibly discharging more formula occurrences in B
6: end for
7: j = j−1
8: end while

1It can be noted that assigning unique marks (numbers for example) to each formula occurrence in a derivation and attach
to each ⊃-Introduction application the set of marks associated to the set of its discharged formula occurrences is equivalent to
add edges indicating these discharges.

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 10

In [4] the authors demonstrate the following lemma about the above procedure:

➤ Lemma 1 (Greedy ⊃-Introduction is Complete): Let Π be a proof of an M⊃ formula α . If Π′ is
the result of the above procedure applied to Π, then Π′ is also a valid proof of α in M⊃.

In [4] the authors also prove that any greedy proof of α is mapped to a rooted, leveled, and labeled
dag-like proof of α , where its root is labeled with α . The tree-like dependency is also mapped into this
initial dag-like proof. The article also argues that HC, when applied to any dag-like proof, preserves
the logical information provided by the decorations used in the dag, resulting in the preservation of the
soundness of the dag-like proof. However, this demonstration is lengthy and must go through multiple
cases. A computer assisted proof seems to be the most appropriate way of proving the soundness of these
rules. This article brings the beginnings of this proof of the soundness preservation of the compression
algorithm, done with the Lean interactive theorem prover [3][2].

2 Horizontal Compression HC

2.1 Primary Definitions

In [4] (sections 3 and 5), in a series of hand-proven results, the authors show that any greedy proof of
an M⊃ formula α can be mapped to a DLDS having the root labeled by α . In fact, this DLDS is the
underlying tree of the Natural Deduction greedy proof, instanced with the decorations that a DLDS need.
Since this article focuses on the proof of properties on the horizontal compression algorithm HC and the
beginnings of the formalization of those properties in Lean, some of them will be omitted here. For our
purposes, HC takes as input an arbitrary DLDS, defined as follows:

➤ Definition 3 (Dag-Like Derivability Structures): Let Γ be a set of M⊃ formulas, OΓ an arbitrary
linear ordering on Γ2, and O0

Γ
= OΓ∪{0,λ}. A Dag-Like Derivability Structure, DLDS for short,

is a tuple ⟨V,(E i
D)i∈O0

Γ

,EA,r, l,L,P⟩, where:

➡ V is a non-empty set of nodes;
➡ For each i ∈ O0

Γ
, E i

D ⊆V ×V is the family of sets of edges of deduction;
➡ EA ⊆V ×V is the set of edges of ancestrality;
➡ r ∈V is the root of the DLDS;
➡ l : V → Γ is a function, such that, for every v ∈V , l(v) is the (formula) label of v;
➡ L :

⋃
i∈O0

Γ

E i
D→B(OS) is a function, such that, for every ⟨u,v⟩ ∈ E i

D, L(⟨u,v⟩) is the bitstring

representing from which formulas the i-th colored deduction edge ⟨u,v⟩ carries its depen-
dency;

➡ P : EA→ {1, . . . , || Γ ||}⋆, such that, for every e ∈ EA, P(e) is a string of the form o1; . . . ;on,
where each oi, i = 1, . . . ,n, is an ordinal in OΓ;

For each i ∈ O0
Γ
, and, ⟨u,v⟩ ∈ E i

D, i is called the color of the edge ⟨u,v⟩. Each deduction edge is colored
with formulas from Γ or the 0 color. The colors are introduced every time a collapsing of nodes as
explained in [4] is performed. Tree-like greedy derivations have only 0 colored deduction edges. DLDSs
obtained from Tree-like greedy derivations by effective collapsing of vertexes, sometime edges, have
colored deduction edges. Obviously, not all DLDS is in the image of the function that maps Tree-like
derivations into DLDS. It is also interesting to note that every decorated greedy tree-like derivation3 is a

2Such that n > 0, for every n ∈ OΓ.
3Greedy tree-like derivations are defined in [4] too.

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 11

DLDS having EA empty and only deductive edges E i
D for i = 0, i.e., has only 0-colored deductive edges.

In fact, any Natural Deduction (usually tree-like) derivation of a formula α can be seen as a DLDS, as
shown in [4]4.

2.2 The Horizontal Compression Algorithm and Rules

In this article we try to provide the overall idea of the horizontal compression algorithm HC. The hori-
zontal compression mentioned in the name is composed of a series of horizontal collapses. A horizontal
collapse applies to a dag-like decorated greedy derivation. It aims to identify two or more nodes in the
rooted dag-like derivation at the same deduction level. The collapsing applies from the conclusion level,
namely the zero level, towards the assumptions levels. When applied to tree-like rooted and decorated
derivations, it yields dags instead of trees. The following algorithm formally defines this operation as a
case analysis, comprised of 26 rules and that applies to a dag-like derivation to yield a (new) dag-like
derivation. The horizontal collapsing initially transforms tree-like derivations into dag-like derivations.
Additional structure is needed to allow us to verify that a particular dag-like derivation is a (correct)
derivation, indeed. We define a dag-like derivability structure as the underlying structure to encode dag-
like derivations. Thus, a dag-like derivation is a DLDS instance, as defined in the above definition, and a
condition that should be true about this DLDS instance. Below we can see the horizontal compression in
its algorithmic form:

Algorithm 2 Horizontal Compression
Require: A tree-like greedy derivation D
Ensure: That the DLDS is D compressed

1: for l from 1 to h(D) do
2: for u and v at l do
3: HCom(u,v)
4: end for
5: end for

In this subsection, we show 9 of the 26 rules that define HCom(u,v)5. Out of these, the rules shown
at Figure 5, Figure 6, and Figure 9 are new additions of this article (they are not described in [4]). Each
rule applies to a specific pair of nodes (vertexes) of a DLDS D , depicted at the left-hand side. The effect
of collapsing these two nodes (vertexes) produces a new DLDS, depicted at the right-hand side of the
rule. It is worth noting that every decorated greedy tree-like derivation is a DLDS having P(v) = ε , for
every v ∈V . These rules represent:

1. A collapse between two non-collapsed nodes:

1.1. Rule 1: The conclusion of an ⊃-Intro rule with the conclusion of an ⊃-Elim rule (Figure 1);
1.2. Rule 2: A hypothesis with the conclusion of an ⊃-Elim rule (Figure 2);
1.3. Rule 3: The conclusion of an ⊃-Intro rule with a hypothesis (Figure 3);
1.4. Rule 4: Two hypotheses (Figure 4);
1.5. New Rule 1: The conclusions of two ⊃-Elim rules (Figure 5); and
1.6. New Rule 2: The conclusions of two ⊃-Intro rules (Figure 6).

4As already said, the soundness of a DLDS is argued in [4].
5These 9 rules shown were the ones we have formalised in Lean.

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 12

2. A collapse between an already collapsed node and a non-collapsed node:

2.1. Rule 5: An already collapsed node with the conclusion of an ⊃-Intro rule (Figure 7);
2.2. Rule 6: An already collapsed node with a hypothesis (Figure 8); and
2.3. New Rule 3: An already collapsed node with the conclusion of an ⊃-Elim rule (Figure 9).

A hypothesis must be either an assumption or a top-formula. The symmetrical cases of rules Rule 1,
Rule 2, and Rule 3 are omitted without the loss of information.
Regarding the types of compression rules, let α and β be formula occurrences in a derivation in M⊃. For
every formula occurrence in a derivation in M⊃, either they are a hypothesis, or the conclusion of an ⊃-
Intro rule, or the conclusion of an ⊃-Elim rule. Considering these possibilities, discounting symmetry, 6
is the total number of possible pairs of α and β . These 6 rules are what we call type-0 rules. We consider
the full subgraph of the DLDS, to which the compression rules apply, to be determined by the set of nodes
reachable from the nodes in their respective left-hand graph, which do not have any collapsed nodes. For
example in Rule 1, represented at Figure 1, any node below the two bullets that are reachable from some
of them is not a collapsed node.
There are also rules of type-1, which have as a precondition that their respective left-hand side graph
represents a pair of nodes to collapse, such that exactly one of them is already the result of a previous
collapse from either a type-0 or a type-1 rule. As stated in 2, the collapses follow the algorithm from the
bottom up and left to right. There are three possible type-1 rules; depending on which rule, ⊃-Intro or
⊃-Elim, the right node to collapse is the conclusion of or if it is a hypothesis. All rules of type-0 and
type-1, and only rules of type-0 and type-1, are shown in this article.
The rules of type-2, in contrast with type-0 and type-1, have as a precondition that the nodes to be
collapsed are both targets of ancestor edges, i.e. members of EA. What we stated is equivalent to saying
that their respective sons collapsed according to the order of execution of algorithm 2.
Each item in the definition of a valid DLDS is an invariant property preserved by the application of all
compression rules. In [4], the authors use this fact to prove Theorem 11, which states that the set of
compression rules preserves validity of any DLDS.

p1

p0

u

•

p2

v

•

p3

c̄1

c̄ = c̄1− p̄0

b̄1

b̄2 = b̄1∨ d̄1

d̄1=

HCom(u,v)
=⇒

Rule1

p1

p0

u

•

p2

•

p3

c̄1

c̄ = c̄1− p̄0
1

b̄1

b̄2 = b̄1∨ d̄1

2

d̄1
22

1

Figure 1: (a) Before collapse (b) After collapse HCom(u,v)

Figure 1 shows the first rule, named Rule 1. We use this figure to show how to read the pictorial
representation of each horizontal compression rule. Both the left and the right-hand sides are subgraphs.
In the left-hand side of the rule in Figure 1, pi, i = 1,3, u and v are different nodes in the subgraph,
such that l(v) = l(u). The deductive edges are in black and have as labels the bit-string representing the
dependency set denoted by L. For example, L(⟨p1,u⟩) = c̄1 shows that the deductive edge ⟨p1,u⟩ ∈ E0

d

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 13

is labeled by the dependency set Sets(c̄1). The absence of a label on an edge indicates that the edge is
unlabeled. A label’s node is • whenever it is not relevant what is its label to read the rule. Edges that
belong to E i

D have the colour i; this is the red ordinal number 1, . . . ,n on a black deduction edge. The
members of EA, the ancestor edges, are coloured blue, and their labels under P labelling function are red
in the picture. For example, ⟨•, p1⟩ ∈ EA and P(⟨•, p1⟩) = 1. Moreover, we have that ⟨u,•⟩ ∈ E1

D in the
graph in the right-hand side of Rule 1.
We advise the reader that in all graphical representations of the rules, both in this article and in [4], we do
assume that nodes and edges drawn in different positions are always different. For example, in Figure 1
(i.e Rule 1), p0, p1, p2, p3, u, v and the two bullets (•) below them are all pairwise different nodes.
Dashed lines represent paths in the graph.

u

•

p2

v

•

p3

¯l(u)

b̄1

b̄2 = b̄1∨ d̄1

d̄1= HCom(u,v)
=⇒

Rule2
h
u

•

p2

•

p3

¯l(u)

b̄1

b̄2 = b̄1∨ d̄1

1

d̄1
1

1

Figure 2: (a) Before collapse (b) After collapse HCom(u,v)

p1

p0

u

•

v

•

c̄1

c̄ = c̄1− p̄0 ¯l(v)

=

HCom(u,v)
=⇒

Rule3

p1

p0

u

•
•

c̄1

c̄ = c̄1− p̄0
1

¯l(v)1

Figure 3: (a) Before collapse (b) After collapse HCom(u,v)

u

•

v

•

¯l(u) ¯l(v)

=

HCom(u,v)
=⇒

Rule4

u

•
•

¯l(u)

¯l(u)

Figure 4: (a) Before collapse (b) After collapse HCom(u,v)

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 14

u

p1

p2

•

v

p3
p4

•

d̄1
d̄2

d̄u = d̄1∨ d̄2

d̄3 d̄4

d̄v = d̄3∨ d̄4

= HCom(u,v)
=⇒

NewRule1
u

p2p1

•

p3

•

p4

d̄1 d̄2

d̄u = d̄1∨ d̄2 1

11
d̄3 d̄4

d̄v = d̄3∨ d̄42

22

Figure 5: (a) Before collapse (b) After collapse HCom(u,v)

u

p1

•

p0

v

p3

•

p2

d̄1

d̄u = d̄1− p̄0

d̄3

d̄v = d̄3− p̄2

=

HCom(u,v)
=⇒

NewRule2 u

p1

•

p0

p3

•

p2

d̄1

d̄u = d̄1− p̄0 1

d̄3

d̄v = d̄3− p̄21

1 1

Figure 6: (a) Before collapse (b) After collapse HCom(u,v)

p1

u

•

p2

•

p3

v

•

p0

c̄1

c̄2
i

b̄1

b̄2

j

d̄1

d̄1− p̄0

ji
HCom(u,v)
=⇒

Rule5

p1

u

•

p2

•

p3

•

p0

c̄1

c̄2
i

b̄1

b̄2 j
d̄1− p̄0

j+1

d̄1

j+1ji

Figure 7: (a) Before collapse (b) After collapse HCom(u,v)

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 15

p1

u

•

p2

•

v

•

c̄1

c̄2
i

b̄1

b̄2

j ¯l(v)

ji
HCom(u,v)
=⇒

Rule6

p1

u

•

p2

• •

c̄1

c̄2 i

b̄1

b̄2
j

¯l(v)

j
i

Figure 8: (a) Before collapse (b) After collapse HCom(u,v)

p1

u

•

p2

•

p3

v

•

p4

c̄1

c̄2
i

i

b̄1

b̄2

j

j
d̄1 d̄2

d̄1∨ d̄2

HCom(u,v)
=⇒

NewRule3

p1

u

•

p2

•

p3

•

p4

c̄1

c̄2
i

i

b̄1

b̄2 j

j
d̄1 d̄2

d̄1∨ d̄2

j+1

j+1
j+1

Figure 9: (a) Before collapse (b) After collapse HCom(u,v)

2.3 The Preservation of Soundness of the Compression Rules

Some further definitions concerning the compression rules and how they affect a DLDS must be made.
All of these definitions were taken from [4], and we write them here in order to have a more self-contained
document.

➤ Definition 4 (Incoming Deductive Edges of a node): Given a DLDS D of α from Γ and a
node k ∈ D , the deductive in-degree of k is defined as INS(k) = { f : f ∈ E i

D, i ∈ O(Γ∪{α})0 ∧
target(f) = k}.

➤ Definition 5 (Outgoing Deductive Edges from a node): Given a DLDS D of α from Γ and
a node k ∈ D , the deductive out-degree of k is defined as OUT S(k) = { f : f ∈ E i

D, i ∈ O(Γ∪
{α})0∧ source(f) = k}.

Note that for any node k, both sets, INS(k) and OUT S(k), do not take into account the ancestor edges in
their definition. We remember that the members of EA are not deductive edges. However, they play an
important, though auxiliary role in the logical reading of any DLDS. A simple observation is that there
is a natural map from a Decorated Greed Tree-Like Derivation (DGT D) to a DLDS.

➤ Definition 6: Let T = ⟨V,ED,Ed ,r, l,L⟩ be a DGT D. Let OS be the order on the range of l,
provided by T itself and Γ the set of leaves in T . Let Dag(T) be ⟨V,(E i

D)i∈O i
Γ
,EA,r, l,L,P⟩,

where E0
D = ED, E i

D = /0, for all i ̸= 0 and EA = /0, P = /0.

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 16

It is easy to verify that Dag(T) is well-defined, and hence it is a DLDS, for every DGT D T . Thus,
we have the mapping Dag from a DGT D to a DLDS. When reading a DGT D from top to bottom in a
tree-like Natural Deduction derivation, there is at most one path from any top-formula occurrence to any
other formula occurrence in the derivation. The following fact is an easy consequence of Dag’s definition
above.

➤ Proposition 1: Let T be a DGT D. For every pair of nodes v and u in T , there is a bijection
between the paths from v to u, in T , and 0-paths, i.e., using only members of E0

D, from v to u in
Dag(T). Moreover, the dependency sets, assigned by L, in both structures, are equal for every
edge ⟨v,u⟩ ∈ E0

D.
From the definition of the mapping Dag, we can see that there is no path in the DLDS Dag(T) with
colors different from 0, due to E i

A = /0, for all i ̸= 0. Moreover, there are no paths in EA, for EA = /0.
The following definition shows how the information stored in the component P, the seventh one, the last,
of any DLDS is used as a relative address for nodes in it. It uses:

➤ Definition 7: el({e}) = e and el(S) =⊥, if S is not {a} for some a.

➤ Definition 8 (Relative Address of a Node): Let D be a DLDS of α from Γ and let γ ∈ O(Γ∪
{al pha})0)⋆ we say that γ is the address of a node v ∈D relative to a node u ∈D iff the following
algorithm 3 returns v on input γ , D and u. The underlying idea is that γ provides information on
every branching in the path from u downwards v. Each ordinal from left to right in γ indicates
which branch to take in.

Algorithm 3 Finding a Node from its Relative Address and Origin of the Path
Require: u, the origin, D , the DLDS, and the relative address γ

1: b← u
2: glues← γ

3: while glues ̸= ε do
4: if size(OUT S(b)) == 1 then
5: g← el(OUT S(b))
6: b← target(g)
7: else if size(OUT S(b))> 1∧ size({e/(e ∈ OUT S(b))∧ (color(e) = head(γ))}) = 1 then
8: g← el({e/(e ∈ OUT S(b))∧ (color(e) = head(γ))})
9: b← target(g)

10: glues← rest(γ)
11: else
12: Return false
13: end if
14: end while
15: Return b

For defining when a DLDS corresponds to a valid derivation we need the definition of Deductive path
below.

➤ Definition 9 (Deductive Path): Given two nodes v1 and v2 in a VLDS D = ⟨V,(E i
D)i∈{λ̄}∪O i

Γ

,EA,r, l,L,P⟩,
we call a path e1,e2, . . . ,en from v1 to v2 a deductive path, iff, for each p= 1, . . . ,n, ep ∈

⋃
i∈{λ̄}∪O i

Γ

E i
D.

In particular, if e1,e2, . . . ,en is a deductive path from v1 to v2 and there is i ̸= 0, such that e j ∈ E i
D

or e j ∈ E λ̄
D , for some 0≤ j ≤ n, then the path is a mixed deductive path from v1 to v2.

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 17

Given a DLDS D = ⟨V,(E i
D)i∈O i

Γ
,EA,r, l,L,P⟩ and a node w ∈V , we define:

1. Pre(w) = {v : Such that there is a deductive path from v to w}, as the set of nodes that are linked
to w by some deductive path;

2. Top(w) = {v : Such that v ∈ Pre(w) and either v is marked as hypothesis, or there is no v′ ∈V , or
⟨v′,v⟩ ∈ (E i

D)i∈O i
Γ
}, as the set of top nodes of a DLDS;

3. DedPaths(w) = {⟨e1, . . . ,en⟩ : Such that e1 . . .en is a deductive path, with source(e1)∈TopNode(w)
and target(en) = w}, as the set of full deductive paths reaching to w ∈V .

➤ Definition 10 (Relation ∼ between Dependency Sets): For any pair of dependency sets b̄ and c̄,
b̄∼ c̄ holds, if and only if, c̄ = b̄ or c̄ = λ or b̄ = λ .

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 18

➤ Definition 11 (Flow): Given a DLDS D = ⟨V,(E i
D)i∈O i

Γ
,EA,r, l,L,P⟩ and a node w ∈V , we define

Flow(D ,w) as a function from Pre(w) into ℘((O0
Γ
)∗×B(OS)), such that:

Flow(D ,w)(v) =

{(⃗b(l(v)),P(⟨v′,v⟩)) : ⟨v′,v⟩ ∈ EA, v′ ∈V} if v ∈ Top(w), there is v′ ∈V , ⟨v′,v⟩ ∈ EA,
{(⃗b(l(v)), /0)} if v ∈ Top(w) and ̸ ∃v′ ∈V , ⟨v′,v⟩ ∈ EA

(b⃗1∨ b⃗2, p) :

(v1,v2,v) ∈⊃E and
(bi, [oi|p]) ∈ Flow(D ,w)(vi),
and ⟨vi,v⟩ ∈ Eoi

D , and,
bi ∼ L(⟨vi,v⟩), i = 1,2,
OR (v1,v2,v) ∈⊃E and
(bi, [0|p]) ∈ Flow(D ,w)(vi), i = 1 or
i = 2, and
(b j, /0) ∈ Flow(D ,w)(v j), j ̸= i, and
⟨vi,v⟩ ∈ E0

D, ⟨v j,v⟩ ∈ E0
D, and

bi ∼ L(⟨vk,v⟩), k = 1,2,


∪(b⃗′− α⃗, p) :

(v′,v) ∈⊃I and
(b′, [o′|p]) ∈ Flow(D ,w)(v′) and
b⃗′ ∼ L(⟨v′,v⟩) and,
⟨v′,v⟩ ∈ Eo′

D , and l(v)=“α ⊃ l(v′)”


∪{

(⃗b(l(v)), /0) : v is marked with ℏ and ̸ ∃v′, ⟨v′,v⟩ ∈ EA

}
∪{

(⃗b(l(v)),P(⟨v′,v⟩)) : v is marked with ℏ and ⟨v′,v⟩ ∈ EA

}
∪

(b⃗′− α⃗,P(⟨va,v⟩)) :

(v′,v) ∈⊃I and
(b′, /0) ∈ Flow(D ,w)(v′) and
va ∈V , ⟨va,v⟩ ∈ EA and,
b⃗′ ∼ L(⟨v′,v⟩), and
l(v)=“α ⊃ l(v′)”, and
⟨v′,v⟩ ∈ E0

D


∪

(b⃗1∨ b⃗2,P(⟨va,v⟩)) :

(v1,v2,v) ∈⊃E and
(bi, /0) ∈ Flow(D ,w)(vi)
and va ∈V , ⟨va,v⟩ ∈ EA, and
⟨vi,v⟩ ∈ E0

D i = 1,2, and
bk ∼ L(⟨vk,v⟩), k = 1,2



otherwise

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 19

➤ Definition 12: Given a structure D = ⟨V,(E i
D)i∈O i

Γ
,EA,r, l,L,P⟩, we say that it is a valid DLDS,

iff, the following conditions hold on it:

➡ Color-Acyclicity For each i ∈ O i
Γ
, E i

D does not have cycles;
➡ Color-Leveled The rooted sub-dag ⟨V,(E i

D)i∈O i
Γ
,r⟩ is leveled;

➡ Ancestor Edges For each ⟨v1,v2⟩ ∈ EA, the level of v1 is smaller than the level of v2;
➡ Ancestor Backway Information For each ⟨v1,v2⟩ ∈ EA, P(⟨v1,v2⟩) is the relative address of

v1 from v2;
➡ Simplicity The rooted sub-dag ⟨V,(E i

D)i∈O i
Γ
,r⟩ is a simple graph, i.e, for each pair of nodes

v1 and v2, there is at most an i ∈ O i
Γ
, such that ⟨v1,v2⟩ ∈ E i

D;
➡ Ancestor-Simplicity The sub-dag ⟨V,EA⟩ is a simple graph;
➡ Non-Nested Ancestor Edges For each ⟨v1,v2⟩ ∈ EA, there is no w in the path from v2 to v1,

determined by P(⟨u,v⟩ ∈ EA), such that ⟨w,z⟩ ∈ EA, for some z ∈ EA;
➡ Correct Rule Application For each w ∈ V , Flow(D ,w)(v) is well-defined for each v ∈

Pre(w). Moreover, for each w and v, Flow(D ,w)(v), with v ∈ Pre(w), we have:
• If Flow(D ,w)(v) = {(⃗b, p)} then OUT (v) = {⟨v,v′⟩} and the color of ⟨v,v′⟩ is head(p),

i.e., ⟨v,v′⟩ ∈ Ehead(p)
D , and b⃗ = L(⟨v,v′⟩), and;

• If Flow(D ,w)(v) ̸= /0 and it is not a singleton either then for each Φi = {(⃗b, p) ∈
Flow(D ,w)(v) : head(p) = i}:

– If Φi ̸= /0 then there is only one v′ ⟨v,v′⟩ ∈ E i
D and if Φi = {(⃗b, p)} then L(⟨v,v′⟩) = b⃗

else L(⟨v,v′⟩) = λ , and;
– If Φi = /0 then there is no v′ ∈V , such that, ⟨v,v′⟩ ∈ E i

D.

Each of the items in definition 2.3 is an invariance property that should be preserved by all compression
rules applications. It is worth noting that in Correct Rule Application, the verification that a rule ap-
plication is correct involves, among other things, finding out that the premises agree with the conclusion
and checking that the dependency sets are correctly assigned, this is the main role of function Flow.

3 Formalization in Lean

This section describes the beginnings of a formalization in Lean (Lean 3, v0.16.53) for the following
theorem (Theorem 12 in [4]):

➤ Main Theorem:
If the algorithm HC is applied to a valid DLDS, then it eventually halts exiting a DLDS that has no
level with two nodes labeled with the same formula.

The more complex/necessary proofs, lemmas, and definitions have been prioritized over simpler ones in
this section. To the former, we provide full explanations and their formalization in Lean. To the latter,
we provide only a brief explanation, and their formalization is omitted. The complete formalization in
Lean can be viewed at [5].

3.1 Type Definitions

Because our result is about the compression rules that define HCom(u,v), we need to create a type for
the entries u and v. In this context, u and v indicate the nodes to be collapsed by the application of
HCom(u,v). However, the information of which nodes u and v represent is insufficient for our proof.

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 20

Not only the nodes to be collapsed, we need to know an entire neighborhood of arrows and vertexes
around the nodes u and v, therefore:

1 inductive neighborhood

2 | dag (CENTER : node)

3 (IN : list deduction)

4 (OUT : list deduction)

5 (ANCESTRAL : list ancestral)

6 export neighborhood (dag)

The neighborhood is directly defined by the compression rules. Every instance of the neighborhood
type is composed of 4 distinct parts: a central node which is used for the collapse (CENTER); a list of
deduction edges arriving at that central node (IN); a list of deduction edges exiting from that central node
(OUT); and a list of edges of ancestrality pertinent to the compression rule (ANCESTRAL). These parts
are given as parameter to the neighborhood type constructor. The types of these parameters, node,
deduction, and ancestral, are defined as follows:

1 inductive node

2 | vertex (LEVEL : N)
3 (LABEL : N)
4 (FORMULA : formula)

5 export node (vertex)

6

7 inductive deduction

8 | arrow (START : node)

9 (END : node)

10 (COLOUR : list N)
11 (DEPENDENT : set formula)

12 export deduction (arrow)

13

14 inductive ancestral

15 | path (START : node)

16 (END : node)

17 (PATH : list N)
18 export ancestral (path)

In the node type’s definition, a node’s level and label (an identifier unique to that node) are each repre-
sented by a natural number, which must be given as parameters to the type constructor. This represen-
tation is justifiable because the number of possible levels/labels in a DLDS is always a natural number,
so any arbitrary ordering over the set of possible levels/labels creates a bijection between the set of lev-
els/labels and the natural numbers. The level parameter of a node is used to associate nodes of the DLDS
for collapse, and check if they are at the same level of the DLDS. Using a parameter to represent the label
of a node makes it possible to differentiate any two nodes of the tree even when looked at in isolation.
These parameters allow for a better, more precise categorization of the nodes, something which our proof
requires. The last part of a node is its formula, which in this context is a M⊃ formula. The formula type
is defined as follows:

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 21

1 inductive formula

2 | atom (SYMBOL : N) : formula

3 | implication (ANTECEDENT CONSEQUENT : formula) : formula

4 export formula (atom implication)

5 notation #SYMBOL := formula.atom SYMBOL

6 notation ANTECEDENT >> CONSEQUENT := formula.implication ANTECEDENT CONSEQUENT

The deduction type is used to instantiate a neighborhood’s deduction edges while the ancestral

type is used to instantiate a neighborhood’s edges of ancestrality. A deduction edge is composed of: a
starting node (START); an end node (END); an identifying colour (COLOUR); and a dependency set
(DEPENDENT). An edge of ancestrality is composed of: a starting node (START); an end node (END);
an identifying colour path (PATH). The formalisation of both these types is taken as a direct translation
from their definition as stated in the previous sections.

3.2 Proving the Main Theorem

We are still working on our Lean-assisted proof for the ➤ The Main Theorem. As of the writing of this
article, we’ve achieved a partial result, at Main_Lemma, showing that:

➤ Main Lemma:
Let HCom(u,v) be the application of either a type-0 or a type-1 compression rule to nodes u and v
of a DLDS D . Let u′ be the resulting collapsed node and D ′ the resulting DLDS after the collapse.
Let v′ be a node in D ′, at the same level and with the same M⊃ formula as u′. Then HCom(u′,v′)
can only be the application a type-1 compression rule.

Central to the Lean-assisted proof of the lemma above are the methods: case_neighborhood_01, which
validates if a given neighborhood of the DLDS represents a node that is the conclusion of an application
of ⊃-Elim; case_neighborhood_02, which validates if a given neighborhood of the DLDS represents
a node that is the conclusion of an application of ⊃-Intro; case_neighborhood_03, which validates
if a given neighborhood of the DLDS represents a node that is a hypothesis; case_neighborhood_04,
which validates if a given neighborhood of the DLDS represents a node that is the resulting collapsed
node of an application of either a type-0 or a type-1 compression rule; and horizontal_collapse,
which takes two applicable neighborhoods and exits a collapsed neighborhood, much like the figures
shown on the previous Subsection 2.2. By analysing these four categories of neighborhoods, and consid-
ering the method for horizontal collapse, the proof of the lemma is done by the comparison of each of
the 9 cases, again disregarding symmetrical cases.
We wrote the formalization to more closely resemble a computer program, motivated by the reasoning
that this would make it easier for us to write it and later for the reader to comprehend it. Usage of Lean’s
tactics mode, marked by keywords begin and end, means that, when processing the input bracketed by
the keywords, the theorem prover can execute each tactic in a compound sequence to produce an expres-
sion of its required type. It also helps the user keep track of the multiple goals and subgoals involved in
a proof by forcing the theorem prover to show that kind of information. On the topic of goals/subgoals,
tactics have and from are used to introduce new subgoals and solve existing goals/subgoals, respec-
tively. The tactic from provides an exact proof term as the solution, meaning that if G is a goal and t

is a term of type T, then from t succeeds, iff, G and T can be unified. Finally, assume is used here to
introduce and name all our hypotheses and variables.

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 22

4 Formal Proofs and Interactive Theorem Proving in Lean

Though our Lean-assisted proof was based on a proof in [4], hurdles had to be overcome during for-
malization, even at this initial work. The most problematic to tackle was choosing the native types to
be used, like the N, list, and set types, and defining our own, like the inductive formula, node,
deduction, ancestral, and neighborhood types. More than once we needed to revise these choices
and definitions, upon noticing something missing or an inconsistency in our formalisation.
Still, the interactive theorem prover had many positive points in its favor. The proof and definitions could
be divided into modules, which could be tackled one at a time. Lean’s implementation of the sorry key-
word, which can substitute any tactic or proof term, regardless of context, was also immensely beneficial,
allowing us to postpone some parts of the formalization without hindering its progress. Removing some
of those sorry keywords was the last thing we did before finishing the proof. Using Lean in iterative
mode, accessed by writing code between begin and end, not only was helpful to us when writing the
formalization, but we also believe it aids the reader in understanding it. In iterative mode, the theorem
prover highlights the current goal after the use of each tactic and also keeps track of variables and propo-
sitions currently in context. Though not all of it, Lean already had several types, proofs, and other such
definitions we needed already implemented in one of its many libraries. Finally, unlike pen-and-paper
proofs, our proof in Lean is an object that can be manipulated and verified, preferably with the assistance
of the prover itself, which should hopefully make it more credible and accessible.

5 Conclusion

This paper is a continuation of the work in [4]. Here we present the initial step towards of a Lean-assisted
proof showing that HC halts for every M⊃ tautology, exiting a valid DLDS with no two equal nodes on
the same level of the DLDS. This result is called Theorem 12 in [4], where the authors show a less
thorough proof of this result.
During the formalization in Lean, finding succinct concepts and definitions to define a DLDS was a par-
ticular challenge. Like a Natural Deduction tree, a DLDS has levels over which recursion can be applied.
An argument can be made that this characteristic is due to the visual nature of the tree type, of which a
DLDS is based, which is not intuitive when defining the type in Lean. However, we realised that there
is no need to ever instantiate an entire DLDS to prove our result. This allowed us to work with the
neighborhood type, which has a much more direct definition based on the compression rules, instead
of a DLDS type.
Using the already implemented N, list, and set types required the formalization of some additional
definitions. Though the number of lemmata proven using these methods was worthy of note, most of
their proofs come directly from the in-built recursion over Lean’s N, list, and set types.
Experiments with the compression of both naive and huge proofs in natural deduction for the non-
hamiltonianicity of some graphs, such as a Petersen graph, was done in [1]. A compression ratio of
almost 90% was obtained, with the bigger and more redundant proofs having the best compression ratio
after removing their redundant parts.
In the future, we will continue this work by finalising the Lean-assisted proof of ➤ The Main Theorem,
by including the compression rules of type-2 to the formalisation. Later, we also intend on writing a
Lean-assisted proof to show the soundness of each compression rule, or that the set of compression rules
preserves validity of any DLDS, as stated in [4] (Theorem 11).

R.C. Moura Brasil Filho, & J.B. Santos, & E.H. Haeusler 23

References
[1] BARROS JÚNIOR, J.F.C.; HAEUSLER, E.H. (2019): A comparative study on compression techniques for

Propositional Proofs. In: Book of Abstracts, 19th Braz. Meeting on Logic, Brazil, pp. 85–86.
[2] DE MOURA, L.; KONG, S.; AVIGAD, J.: Theorem Proving in Lean. Available at https://leanprover.

github.io/theorem_proving_in_lean/. Accessed: June 2022.
[3] DE MOURA, L.; KONG, S.; AVIGAD, J.; VAN DOORN, F.; VON RAUMER, J. (2015): The Lean theorem

prover (system description). In: Proceedings of the 25th International Conference on Automated Deduction,
Berlin, Germany, pp. 378–388.

[4] HAEUSLER, E.H.; BARROS JÚNIOR, J.F.C.: On the horizontal compression of dag-derivations in minimal
purely implicational logic. Available at https://arxiv.org/pdf/2206.02300.pdf. Accessed: June 2022.

[5] MOURA BRASIL FILHO, R.C.: Horizontal-Compression. Available at https://github.com/Robilsu/
Horizontal-Compression. Accessed: June 2022.

[6] PRAWITZ, D. (1965): Natural Deduction: Proof-Theoretical Study. Dover Publications.

https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover.github.io/theorem_proving_in_lean/
https://arxiv.org/pdf/2206.02300.pdf
https://github.com/Robilsu/Horizontal-Compression
https://github.com/Robilsu/Horizontal-Compression

© Cruz, Madeira & Barbosa
This work is licensed under the
Creative Commons Attribution License.

Paraconsistent transition systems*

Ana Cruz
INESC TEC, University of Minho, Portugal

Alexandre Madeira
CIDMA, University of Aveiro, Portugal

Luı́s S. Barbosa
INESC TEC, University of Minho, Portugal

Often in Software Engineering a modelling formalism has to support scenarios of inconsistency
in which several requirements either reinforce or contradict each other. Paraconsistent transition
systems are proposed in this paper as one such formalism: states evolve through two accessibility
relations capturing weighted evidence of a transition or its absence, respectively. Their weights come
from a specific residuated lattice. A category of these systems, and the corresponding algebra, is
defined providing a formal setting to model different application scenarios. One of them, dealing
with the effect of quantum decoherence in quantum programs, is used for illustration purposes.

1 Introduction

Dealing with application scenarios where requirements either reinforce or contradict each other is not
uncommon in Software Engineering. One such scenarios comes from current practice in quantum com-
putation in the context of NISQ (Noisy Intermediate-Scale Quantum) technology [11] in which levels of
decoherence of quantum memory need to be articulated with the length of the circuits to assess program
quality.

In a recent paper [7], the authors introduced a new kind of weighted transitions systems which
records, for each transition, a positive and negative weight which, informally, capture the degree of
effectiveness (‘presence’) and of impossibility (‘absence’) of a transition. This allows the model to
capture both vagueness, whenever both weights sum less than 1, as usual e.g. in fuzzy systems, and in-
consitency, when their sum exceeds 1. This last feature motivates the qualifier paraconsistent borrowed
from the work on paraconsistent logic [9, 5], which accommodates inconsistency in a controlled way,
treating inconsistent information as potentially informative. Such logics were originally developed in
Latin America in the decades of 1950 and 1960, mainly by F. Asenjo and Newton da Costa. Quickly,
however, the topic attracted attention in the international community and the original scope of mathe-
matical applications broadened out, as witnessed in a recent book emphasizing the engineering potential
of paraconsistency [2]. In particular, a number of applications to themes from quantum mechanics and
quantum information theory have been studied by D. Chiara [4] and W. Carnielli and his collaborators
[1, 6].

This paper continues such a research program in two directions. First it introduces a suitable no-
tion of morphism for paraconsistent labelled transition systems (PLTS) leading to the definition of the
corresponding category and its algebra. Notions of simulation, bisimulation and trace for PLTS are also
discussed. On a second direction, the paper discusses an application of PLTS to reason about the effect
of quantum decoherence in quantum programs.

*This work is supported by by FCT, the Portuguese funding agency for Science and Technology with the projects
UIDB/04106/2020 and PTDC/CCI-COM/4280/2021

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Cruz, Madeira & Barbosa 25

Paper structure. After recalling the concept of a PLTS and defining their morphisms in section 2,
section 3 discusses suitable notions of simulation, bisimulation and trace. Compositional construction of
(pointed) PLTS are characterised in section 4 by exploring the relevant category, following G. Winskel
and M. Nielsen’s ‘recipe’ [13]. Section 5 illustrates their use to express quantum circuits with decoher-
ence. Finally, section 6 concludes and points out a number of future research directions.

2 Paraconsistent labelled transition systems

A paraconsistent labelled transition system (PLTS) incorporates two accessibility relations, classified
as positive and negative, respectively, which characterise each transition in opposite ways: one repre-
sents the evidence of its presence and other the evidence of its absence. Both relations are weighted
by elements of a residuated lattice Σ = ⟨∧,∨,⊙,→,1,0⟩, where, ⟨A,∧,∨,1,0⟩ is a lattice, ⟨A,⊙,1⟩ is
a monoid, and operation ⊙ is residuated, with →, i.e. for all a,b,c ∈ A, a⊙ b ≤ c ⇔ b ≤ a → c. A
Gödel algebra G = ⟨[0,1],min,max,min,→,0,1⟩ is an example of such a structure, that will be used in
the sequel. Operators max and min retain the usual definitions, whereas implication is given by

a → b =

{
1, if a ≤ b
b, otherwise

.

Our constructions, however, are, to a large extent, independent of the particular residuated lattice chosen.
The definition below extends the one in reference [7] to consider labels in an explicit way. Thus,

Definition 1. A paraconsistent labelled transition system (PLTS) over a residuted lattice A and a set
of atomic actions Π is a structure ⟨W,R,Π⟩ where, W is a non-empty set of states, Π is a set of la-
bels, and R ⊆ W ×Π×W × A× A characterises its dynamics, subjected to the following condition:
between two arbitrary states there is at most one transition involving label a, for every a ∈ Π. Each tuple
(w1,a,w2,α,β) ∈ R represents a transition from w1 to w2 labelled by (a,α,β), where α is the degree to
which the action a contributes to a transition from w1 to w2, and β , dually, expresses the degree to which
it prevents its occurrence.

The condition imposed in the definition above makes it possible to express relation R in terms of a
positive and a negative accessibility relation r+,r− : Π −→ AW×W , with

r+(π)(w,w′) =

{
α if (w,π,w′,α,β) ∈ R
0 otherwise

and r− defined similarly. These two relations jointly express different behaviours associated to a transi-
tion:

• inconsistency, when the positive and negative weights are contradictory, i.e. they sum to some
value greater then 1; this corresponds to the upper triangle in the picture below, filled in grey.

• vagueness, when the sum is less than 1, corresponding to the lower, periwinkle triangle in the same
picture;

• consistency, when the sum is exactly 1, which means that the measures of the factors enforcing or
preventing a transition are complementary, corresponding to the red line in the picture.

Cruz, Madeira & Barbosa 26

Tr
an

si
tio

n
is

pr
es

en
t

Transition is absent

0 1
0

1

Morphisms between PLTS respect, as one would expect, the structure of both accessibility relations.
Formally,

Definition 2. Let T1 = ⟨W1,R1,Π⟩, T2 = ⟨W2,R2,Π⟩ be two PLTSs defined over the same set of actions
Π. A morphism from T1 to T2 is a function h : W1 →W2 such that

∀a∈Π, r+1 (a)(w1,w2)≤ r+2 (a)(hw1,hw2) and r−1 (a)(w1,w2)≥ r−2 (a)(hw1,hw2)

Example 1. Function h = {w1 7→ v1,w2 7→ v2,w3 7→ v3} is a morphism from M1 to M2, over Π =
{a,b,c,d}, depicted below

w1

w2 w3

w4

(a,0.7,0.2)
(b,0.3,0.5)

(c,0.2,0.3)
(d,0.5,0.8)

v1

v2 v3

v4

v5

(a,0.9,0.1)
(b,0.5,0.2)

(c,0.6,0.1)
(c,0.8,0.4)

(a,0.4,0.7)

3 Simulation and Bisimulation for PLTS

Clearly, PLTSs and their morphisms form a category, with composition and identities borrowed from
Set. To compare PLTSs is also useful to define what simulation and bisimulation mean in this setting.
Thus, under the same assumptions on T1 and T2,

Definition 3. A relation S ⊆W1 ×W2 is a simulation provided that, for all ⟨p,q⟩ ∈ S and a ∈ Π,

p
(a,α,β)−−−−→T1 p′ ⇒ ⟨∃q′∈W2 .∃γ,δ∈[0,1]. q

(a, γ, δ)−−−−−→T2 q′ ∧ ⟨p′,q′⟩ ∈ S ∧ γ ≥ α ∧ δ ≤ β ⟩

which can be abbreviated to

p
(a,α,β)−−−−→T1 p′ ⇒ ⟨∃q′∈W2 . q

(a, γ: γ≥α , δ : δ≤β)−−−−−−−−−−−−→T2 q′ ∧ ⟨p′,q′⟩ ∈ S⟩

Two states p and q are similar, written p ≲ q, if there is a simulation S such that ⟨p,q⟩ ∈ S.

Whenever one restricts in the definition above to the existence of values γ (resp. δ) such that γ ≥ α

(resp. δ ≤ β), the corresponding simulation is called positive (resp. negative).

Cruz, Madeira & Barbosa 27

Example 2. In the PLTSs depicted below, w1 ≲ v1, witnessed by

S = {⟨w1,v1⟩,⟨w2,v2⟩,⟨w3,v2⟩,⟨w4,v3⟩,⟨w5,v4⟩}

w1 w2

w3

w4

w5

(a,0.4,0.7)

(a,0.3,0.6)

(b,0.2,0.8)

(c,0.2,0.9)

v1 v2 v3

v4

(a,0.5,0.5) (b,0.3,0.5)

(c,0.5,0.5)

Finally,

Definition 4. A relation B ⊆W1 ×W2 is a bisimulation if for ⟨p,q⟩ ∈ B and a ∈ Π

p
(a,α,β)−−−−→M1 p′ ⇒ ⟨∃q′ ∈W2 : q

(a,α,β)−−−−→M2 q′∧⟨p′,q′⟩ ∈ B⟩

q
(a,α,β)−−−−→M2 q′ ⇒ ⟨∃p′ ∈W1 : p

(a,α,β)−−−−→M1 p′∧⟨p′,q′⟩ ∈ B⟩

Two states p and q are bisimilar, written p ∼ q, if there is a bisimulation B such that ⟨p,q⟩ ∈ B.

Example 3. Consider the two PLTSs depicted below. Clearly, w1 ∼ v1.

w1

w2 w3

(a,0.5,0.3)

(a,0.7,0.2)

(c,0.2,0.3)

(c,0.4,0.5)(c,0.4,0.5)

v1

v2

(a,0.7,0.2)

(c,0.4,0.5)

Lemma 1. Similarity, ≲, and bisimilarity, ∼, form a preorder and an equivalence relation, respectively.

Proof. The proof is similar to one for classical labelled transition systems (details in [8]).

As usual, a trace from a given state w in a PLTS T is simply the sequence s of tuples (a,α,β) labelling
a path in T starting at w. A first projection on such a sequence, i.e. π∗

1 (s) retrieves the corresponding
sequence of labels that constitutes what may be called an unweighted trace. More interesting is the
notion of weighted trace which appends to the sequence of labels, the maximum value for the positive
accessibility relation and the minimum value for the negative accessibility relation computed along the
trace s. Formally,

Definition 5. Given a trace s in a PLTS T , the corresponding weighted trace is defined by

tw(s) = ⟨π∗
1 ,
∧
(π∗

2),
∨
(π∗

3)⟩(s)

where, πn denotes the n projection in a tuple, ⟨ f ,g,h⟩ is the universal arrow to a Cartesian product, f ∗

is the functorial extension of f to sequences over its domain, and
∧

(resp.
∨

) are the distributed version
of ∧ (resp. ∨) over sequences.

Definition 6. A weighted trace t = ⟨[a1,a2, ...,am],α,β ⟩ is a weighted subtrace of t ′= ⟨[b1,b2, ...,bn],γ,δ ⟩
if (i) sequence [a1,a2, ...,am] is a prefix of [b1,b2, ...,bn], (ii) γ ≥ α and (iii) δ ≤ β . The definition lifts to
sets as follows: given two sets X and Y of weighted traces,

X ⊑ Y iff ∀t∈X .∃t ′∈Y . t is a weighted subtrace of t ′

Cruz, Madeira & Barbosa 28

Example 4. Consider again the two PLTSs given in Example 2. The weighted traces from w1 are {t1 =
⟨[a,b],0.2,0.8⟩, t2 = ⟨[a,c],0.2,0.9⟩} and the ones from v1 are {t ′1 = ⟨[a,b],0.5,0.5⟩, t ′2 = ⟨[a,c],0.5,0.5⟩}.
Clearly, t1 (resp. t2) is a weighted subtrace of t ′1 (resp. t ′2).
Lemma 2. Consider two PLTSs, T1 = ⟨W1,R1⟩ and T2 = ⟨W2,R2⟩. If two states p ∈W1 and q ∈W2 are
similar (resp. bisimilar), i.e., p ≲ q (resp. p ∼ q), then the set of weighted traces from p, X, and the set
of weighted traces from q, Y , are such that X ⊑ Y (resp. coincide).

Proof. If p ≲ q each trace t from p is a prefix of trace t ′ from q. Let [α1,α2, ...,αm] and [β1,β2, ...,βm]
be the sequences of positive and negative weights associated to t. Similarly, let [α ′

1,α
′
2, ...,α

′
n] and

[β ′
1,β

′
2, ...,β

′
n] be the corresponding sequences for t ′; of course m ≤ n. As (p,q) belongs to a simulation,

α ′
i ≥ αi and β ′

i ≤ βi, for all i ≤ n. So, Min[α ′
1,α

′
2, ...,α

′
m]≥ Min[α1,α2, ...,αm] and Max[α ′

1,α
′
2, ...,α

′
m]≤

Max[α1,α2, ...,αm]. Note that Min and Max correspond to
∧

and
∨

in a Gödel algebra. Thus,

⟨t,Min[α1,α2, ...,αn],Max[α1,α2, ...,αn]⟩

is a weighted subtrace of ⟨t ′|m,Min[α ′
1,α

′
2, ...,α

′
n],Max[α ′

1,α
′
2, ...,α

′
n]⟩, where t ′|m is the subsequence of

t with m elements. The statement for ∼ follows similarly.

Note that the converse of this lemma does not hold, as shown by the following counterexample.
Example 5. Consider the PLTS depicted below.

w1 w2 w3

(a,0.5,0.3) (b,0.7,0.2)

v1 v2 v3

(a,0.7,0.2) (b,0.5,0.3)

X = {⟨[a],0.5,0.3⟩,⟨[a,b],0.5,0.3⟩} is the set of weighted traces from w1. Similarly,
Y = {⟨[a],0.7,0.2⟩,⟨[a,b],0.5,0.3⟩} is the corresponding set from w2. Clearly ⟨[a],0.5,0.3⟩ is a weighted
subtrace of ⟨[a],0.7,0.2⟩. Thus X ⊑ Y . However, w1 ̸≲ w2.

4 New PLTS from old

New PLTS can be built compositionally. This section introduces the relevant operators by exploring the
structure of the category of Pt of pointed PLTS, i.e. whose objects are PLTSs with a distinguished initial
state, i.e. ⟨W, i,R,Π⟩, where ⟨W,R,Π⟩ is a PLTS and i ∈ W . Arrows in Pt are allowed between PLTSs
with different sets of labels, therefore generalizing Definition 2 as follows:
Definition 7. Let T1 = ⟨W1, i1,R1,Π⟩ and T2 = ⟨W2, i2,R2,Π

′⟩ be two pointed PLTSs. A morphism in
Pt from T1 to T2 is a pair of functions (σ : W1 → W2, λ : Π →⊥ Π′) such that1 σ(i1) = i2, and, if
(w,a,w′,α,β) ∈ R1 then (σ(w),λ (a),σ(w′),α ′,β ′) ∈ R2

⊥, with α ≤ α ′ and β ′ ≤ β , where, for an
accessibility relation R, R⊥ = R∪{(w,⊥,w,1,0) | w ∈ W} denotes R enriched with idle transitions in
each state.
Clearly Pt forms a category, with composition inherited from Set and Set⊥, the later standing for the
category of sets and partial functions, with Tnil = ⟨{∗},∗, /0, /0⟩ as both the initial and final object. The
corresponding unique morphisms are ! : T → Tnil, given by ⟨∗,()⟩, and ? : Tnil → T , given by ⟨i,()⟩, where
() is the empty map and notation x stands for the constant, everywhere x, function.

An algebra of PLTS typically includes some form of parallel composition, disjoint union, restriction,
relabelling and prefixing, as one is used from the process algebra literature [3]. Accordingly, these
operators are defined along the lines proposed by G. Winskel and M. Mielsen [13], for the standard,
more usual case.

1Notation λ : Π →⊥ Π′ stands for the totalization of a partial function by mapping to ⊥ all elements of Π for which the
function is undefined.

Cruz, Madeira & Barbosa 29

Restriction. The restriction operator is intended to control the interface of a transition system, preserv-
ing, in the case of a PLTS, the corresponding positive and negative weights. Formally,
Definition 8. Let T = ⟨W, i,R,Π⟩ be a PLTS, and λ : Π′ → Π be an inclusion. The restriction of T to λ ,
T ↾ λ , is a PLTS ⟨W, i,R′,Π′⟩ over Π′ such that R′ = {(w,π,w′,α,β) ∈ R | π ∈ Π′}.

There is a morphism f = (1W ,λ) from T ↾ λ to T , and a functor P : Pt → Set⊥ which sends a
morphism (σ ,λ) : T → T ′ to the partial function λ : Π′ → Π. Clearly, f is the Cartesian lifting of
morphism P(f) = λ in Set⊥. Being Cartesian means that for any g : T ′ → T in Pt such that P(g) = λ

there is a unique morphism h such that P(h) = 1Π′ making the following diagram to commute:

T ′

T ↾ λ T

h
g

f

Note that, in general, restriction does not preserve reachable states. Often, thus, the result of a restriction
is itself restricted to its reachable part.

Relabelling. In the same group of interface-modifier operators, is relabelling, which renames the labels
of a PLTS according to a total function λ : Π → Π′.
Definition 9. Let T = ⟨W, i,R,Π⟩ be a PLTS, and λ : Π′ → Π be a total function. The relabelling of T
according to λ , T{λ} is the PLTS ⟨W, i,R′,Π′⟩ where R′ = {(w,λ (a),w′,α,β) | (w,a,w′,α,β) ∈ R}.

Dually to the previous case, there is a morphism f =(1W ,λ) from T to T{λ} which is the cocartesian
lifting of λ (= P(f)).

Parallel composition. The product of two PLTSs combines their state spaces and includes all syn-
chronous transitions, triggered by the simultaneous occurrence of an action of each component, as well
as asynchronous ones in which a transition in one component is paired with an idle transition, labelled
by ⊥, in the other. Formally,
Definition 10. Let T1 = ⟨W1, i1,R1,Π1⟩ and T2 = ⟨W2, i2,R2,Π2⟩ be two PLTS. Their parallel composi-
tion T1×T2 is the PLTS ⟨W1×W2,(i1, i2),R,Π′⟩, such that Π′ = Π1×⊥Π2 = {(a,⊥) | a ∈ Π1}∪{(⊥,b) |
b ∈ Π2}∪{(a,b) | a ∈ Π1,b ∈ Π2}, and (w,a,w′,α,β) ∈ R if and only if (π1(w),π1(a),π1(w′),α1,β1) ∈
R1

⊥, (π2(w),π2(a),π2(w′),α2,β2) ∈ R2
⊥, α = min(α1,α2) and β = max(β1,β2).

Lemma 3. Parallel composition is the product construction in Pt.

Proof. In the diagram below let gi = (σi,λi), for i = 1,2, and define h as h = (⟨σ1,σ2⟩,⟨λ1,λ2⟩),
where ⟨ f1, f2⟩(x) = (f1(x), f2(x)) is the universal arrow in a product diagram in Set. Clearly, h lifts
universality to Pt, as the unique arrow making the diagram to commute. It remains show it is in-
deed an arrow in the category. Indeed, let T = ⟨W, i,R,Π⟩, T1 = ⟨W1, i1,R1,Π1⟩, and define T1 ×
T2 = ⟨W1 ×W2,(i1, i2),R′,Π′⟩ according to defintion 10. Thus, for each (w,a,w′,α,β) ∈ R, there is
a transition (σ1(w),λ1(a),σ1(w′),α1,β1) ∈ R1

⊥ such that α ≤ α1 and β ≥ β1; and also a transition
(σ2(w),λ2(a),σ2(w′),α2,β2) ∈ R2

⊥ such that α ≤ α1 and β ≥ β2. Moreover, there is a transition

(⟨σ1,σ2⟩(w),⟨λ1,λ2⟩(a),⟨σ1,σ2⟩(w′),min(α1,α2),max(β1,β2)) ∈ R′

Thus, there is a transition (⟨σ1,σ2⟩(w),⟨λ1,λ2⟩(a),⟨σ1,σ2⟩(w′),α ′,β ′))∈ R′, for any (w,a,w′,α,β)∈ R
, such that α ≤ α ′ and β ≥ β ′. Furthermore, ⟨σ1,σ2⟩(i) = (σ1(i),σ2(i)) = (i1, i2). This establishes h as
a Pt morphism.

Cruz, Madeira & Barbosa 30

T1 T1 ×T2 T2

T

Π1 Π2

hg1 g2

Example 6. Consider the two PLTSs, T1 and T2, depicted below.

i1 w

(a,0.7,0.2)

i2 v

(b,0.4,0.2)

Their product T is the PLTS

(i1, i2) (w, i2)

(w,v)(i1,v)

((a,⊥),0.7,0.2)

((⊥,b),0.4,0.6)

((a,b),0.4,0.2)
((⊥,b),0.4,0.6)

((a,⊥),0.7,0.2)

A suitable combination of parallel composition and restriction may enforce different synchronization
disciplines. For example, interleaving or asynchronous product T1 9 T2 is defined as (T1 ×T2) ↾ λ with
the inclusion λ : Π → Π1 ×⊥ Π2 for Π = {(a,⊥) | a ∈ Π1}∪{(⊥,b) | b ∈ Π2}. This results in a PLTS
⟨W1 ×W2,(i1, i2),R,Π⟩ such that R = {(w,a,w′,α,β) ∈ R′ | a ∈ Π}.

Similarly, the synchronous product T1 ⊗T2 is also defined as (T1 ×T2) ↾ λ , taking now Π = {(a,b) |
a ∈ Π1 and b ∈ Π2} as the domain of λ .

Example 7. Interleaving and synchronous product of T1 and T2 as in Example 8, are depicted below.

(i1, i2) (w, i2)

(w,v)(i1,v)

((a,⊥),0.7,0.2)

((⊥,b),0.4,0.6)((⊥,b),0.4,0.6)

((a,⊥),0.7,0.2)

(i1, i2) (w, i2)

(w,v)(i1,v)

((a,b),0.4,0.2)

T1 9T2 T1 ⊗T2

Sum. The sum of two PLTSs corresponds to their non-determinisitic composition: the resulting PLTS
behaves as either of its components. Formally,

Definition 11. Let T1 = ⟨W1, i1,R1,Π1⟩ and T2 = ⟨W2, i2,R2,Π2⟩ be two PLTSs. Their sum T1 +T2 is the
PLTS ⟨W,(i1, i2),R,Π1 ∪Π2⟩, where

– W = (W1 ×{i2})∪ ({i1}×W2) ,

Cruz, Madeira & Barbosa 31

– t ∈R if and only if there exists a transition (w,a,w′,α,β)∈R1 such that t = (ι1(w),a, ι1(w′),α,β),
or a transition (w,a,w′,α,β) ∈ R2 such that t = (ι2(w),a, ι2(w′),α,β)

where ι1 and ι2 are the left and right injections associated to a coproduct in Set, respectively.

Sum is actually a coproduct in Pt (the proof follows the argument used for the product case), making
T1 +T2 dual to T1 ×T2.

Example 8. The sum T1 +T2, for T1,T2 defined as in Example 8 is given by

(i1, i2) (w, i2)

(i1,v)

(a,0.7,0.2)

(b,0.4,0.6)

Prefixing. As a limited form of sequential composition, prefix appends to a pointed PLTS a new initial
state and a new transition to the previous initial state, after which the system behaves as the original one.

Definition 12. Let T = ⟨W, i,R,Π⟩ be a PLTS and wnew a fresh state identifier not in W. Given an
action a, and α,β ∈ [0,1], the prefix (a,α,β)T is defined as ⟨W ∪ {wnew},wnew,R′,Π ∪ {a}⟩ where
R′ = R∪ (wnew,a, i,α,β).

Since it is not required that the prefixing label is distinct from the ones in the original system, prefix-
ing does not extend to a functor in Pt, as illustrated in the counterexample below. This is obviously the
case for a category of classical labelled transition systems as well. In both cases, however, prefix extens
to a functor if the corresponding categories are restricted to action-preserving morphisms, i.e. in which
the action component of a morphism is always an inclusion

Example 9. Consider two pointed PLTS T1 and T2

i1 w

(a,0.7,0.2)

i2 v

(b,0.8,0.1)

connected by a morphism (σ ,λ) : T1 → T2 such that σ(i1) = i2, σ(w) = v and λ (a) = b. Now consider
the prefixes (a,1,0)T1 and (a,1,0)T2 depicted below.

i i1 w

(a,1,0) (a,0.7,0.2)

i′ i2 v

(a,1,0) (b,0.8,0.1)

Clearly, a mapping from the actions in (a,1,0)T1 to the actions in (a,1,0)T1 does not exist so neither
exists a morphism between the two systems.

Functorial extensions. Other useful operations between PLTSs, typically acting on transitions’ posi-
tive and negative weights, and often restricted to PLTSs over a specific residuated lattice, can be defined
functorially in Pt. An example involving a PLTS defined over a Gödel algebra is an operation that uni-
formly increases or decreases the value of the positive (or the negative, or both) weight in all transitions.
Let

a⊕b =


1 if a+b ≥ 1
0 if a+b ≤ 0
a+b otherwise

Thus,

Cruz, Madeira & Barbosa 32

Definition 13. Let T = ⟨W, i,R,Π⟩ be a PLTS. Taking v ∈ [−1,1], the positive v-approximation T⊕+
v is

a PLTS ⟨W, i,R′,Π⟩ where

R′ = {(w,π,w′,α ⊕ v,β) | (w,π,w′,α,β) ∈ R}.

The definition extends to a functor in Pt which is the identity in morphisms. Similar operations can be
defined to act on the negative accessibility relation or both.

Another useful operation removes all transitions in a pointed PLTS for which the positive accessi-
bility relation is below a certain value and the negative accessibility relation is above a certain value.
Formally,

Definition 14. Let T = ⟨W, i,R,Π⟩ be a pointed PLTS, and p,n∈ [0,1]. The purged PLTS Tp↑↓n is defined
as ⟨W, i,R′,Π⟩ where

R′ = {(w,π,w′,α,β) | (w,π,w′,α,β) ∈ R and α ≥ p and β ≤ m}

Clearly, the operation extends to a functor in Pt, mapping morphisms to themselves.

5 An application to quantum circuit optimization

In a quantum circuit [10] decoherence consists in decay of a qubit in superposition to its ground state
and may be caused by distinct physical phenomena. A quantum circuit is effective only if gate opera-
tions and measurements are performed to superposition states within a limited period of time after their
preparation. In this section pointed PLTS will be used to model circuits incorporating qubit decoherence
as an error factor. Typically, coherence is specified as an interval corresponding to a worst and a best
case. We employ the two accessibility relations in a PLTS to model both scenarios simultaneously.

An important observation for the conversion of quantum circuits to PLTS is that quantum circuits
always have a sequential execution. Simultaneous operations performed to distinct qubits are combined
using the tensor product ⊗ into a single operation to the whole collection of qubits which forms the
state of the circuit. The latter is described by a sequence of executions e1,e2,e3, ... where each ei is the
tensor product of the operations performed upon the state at each step. The conversion to a PLTS is
straightforward, labelling each transition by the tensor of the relevant gates O1 ⊗·· ·⊗Om, for m gates
involved, but for the computation of the positive and negative accessibility relations, r+ and r−.

The weights of a transition corresponding to the application of a gate O acting over n qubits q1 to qn

are given by

v(O) =

{
(1,0) if qubits q1, · · ·qn are in a definite state
(Maxi fmax(qi),Mini fmin(qi)) otherwise

where fmax(q) =
τmax(q)−τprep(q)

100 and fmin(q) =
τmin(q)−τprep(q)

100 , τmax(q) and τmin(q) are the longest and short-
est coherence times of q, respectively, and τprep(q) is the time from the preparation of q’s superposition
to the point after the execution of O. The latter are fixed for each type of quantum gate; reference [14]
gives experimentally computed values for them as well as for maximum and minimum values for qubit
decoherence.

Consider, now, a transition t labelled by a O1 ⊗ ...⊗Om Then, r+ = Maxn
i=1{π1(v(Oi))} and r− =

1−Minn
i=1{π2(v(Oi))}.

Example 10. Consider the following circuits designed with IBM Quantum Composer:

Cruz, Madeira & Barbosa 33

Assume that the execution time of a single qubit gate is τG = 20µs and of a two qubit gate is
2τG = 40µs [14], and that both qubits have the same coherence times τmax(q1) = τmax(q2) = 100µs
and τmin(q1) = τmin(q2) = 70µs. Thus the circuit on the left (resp. right) translates into T1 (on the left)
and T2 (on the right).

q[0];q[1]

q[0];q[1]

q[0];q[1]

q[0];q[1]

(H ⊗ I,1,0)

(I ⊗H,0.8,0.5)

(CNOT,0.4,0.9)

q[0];q[1]

q[0];q[1]

q[0];q[1]

(H ⊗H,1,0)

(CNOT,0.6,0.7)

As both circuits implement the same quantum algorithm and our focus is only on the effectiveness of
the circuits, we may abstract from the actual sequences of labels and consider instead T1{λ} and T2{λ},
for λ mapping each label to a unique label ⋆. Their maximal weighted traces 2 are

tT1{λ} = ⟨[∗,∗,∗],0.4,0.9⟩ and tT2{λ} = ⟨[∗,∗,∗],0.6,0.7⟩

Clearly tT1{λ} is a weighted subtrace of tT2{λ}, therefore suggesting a criteria for comparing the effec-
tiveness of circuits. Indeed, a circuit is more effective (i.e. less affected by qubit decoherence) than
other if the maximal weighted trace of its (relabelled) PLTS is a weighted subtrace of the corresponding
construction in the other.

The second circuit is obviously more efficient than the first. This suggests we could use the weighted
subtrace relation as a metric to compare circuit quality, for circuits implementing equivalent algorithms.

Reference [14] introduces a tool which tried to transform a circuit so that the lifetime of quantum
superpositions is shortened. They give several examples of circuits and show how the application of the
tool results in a circuit performing the same algorithm but with a reduced error rate. Our next example
builds on one of their examples, computes the corresponding PLTS and compare the maximal weighted
traces.

Example 11. Consider the following circuits reproduced from [14], which in ideal quantum devices
would be indistinguishable.

2Such maximal traces are easily identifiable given the peculiar shape of a PLTS corresponding to a quantum circuit.

Cruz, Madeira & Barbosa 34

These circuits are represented as

s1

s2

s3

s4

s5

s6

s7

s8

(H1 ⊗H2,1,0)

(CX2,3,0.6,0.7)

(H2 ⊗H6,0.8,0.5)

(CX1,2 ⊗CX6,11,0,1)

(H6 ⊗H1,0.8,0.5)

(CX6,11,0.6,0.7)

(CX2,6,0,1)

r1

r2

r3

r4

r5

r6

(H2 ⊗H6,1,0)

(CX2,3 ⊗CX6,11,0.6,0.7)

(H1 ⊗H2 ⊗H6 ⊗H11,0.8,0.5)

(CX1,2 ⊗CX6,11,0.6,0.7)

(CX2,6,0.6,0.7)

where H and CX are indexed by the numeric identifiers of the qubit(s) to which they apply in each
execution step. The maximal weighted trace of the (relabelled PLTS corresponding to) circuit in the
right, ⟨[∗,∗,∗,∗,∗,∗,∗],0.6,0.7⟩, is a weighted subtrace of the one corresponding to circuit in the left,
⟨[∗,∗,∗,∗,∗],0,1⟩. Thus, the former circuit is more effective than the latter, as experimentally verified in
[14].

Example 12. As a final example consider two circuits differing only on the time points in which mea-
surements are placed.

Cruz, Madeira & Barbosa 35

The corresponding PLTS, computed again with the values given in reference (where execution time of a
measurement is τM = 300ns ∼ 1µs), are depicted below

s1

s2

s3

s4

s5

s6

s7

(H1 ⊗H2,1,0)

(M3,0.99,0.31)

(M2,0.98,0.32)

(CX0,1,0.58,0.72)

(M1,0.99,0.31)

(M0,0.98,0.32)

r1

r2

r3

r4

r5

r6

r7

(H1 ⊗H2,1,0)

(CX0,1,0.6,0.7)

(M3,0.99,31)

(M2,0.98,0.32)

(M1,0.97,0.33)

(M0,0.96,0.34)

The maximal weighted trace ⟨[∗,∗,∗,∗,∗,∗,],0.6,0.7⟩ corresponding to the circuit on the right is a
weighted subtrace of the corresponding one for the circuit on the left, ⟨[∗,∗,∗,∗,∗,∗,],0.58,0.72⟩. This
shows that measuring can be safely postponed to the end of a circuit, as experimentally verified.

6 Conclusions and future work

The paper introduced a category of a new kind of labelled transition systems able to capture both vague-
ness and inconsistency in software modelling scenarios. The structure of this category was explored to
define a number of useful operators to build such systems in a compositional way. Finally, PLTS were
used to model effectiveness concerns in the analysis of quantum circuits. In this case the weight cor-
responding to the ‘presence’ of a transition captures an index measuring its effectiveness assuming the
best case value for qubit decoherence. On the other hand, the weight corresponding to the ‘absence’ of a
transition measures the possibility of non-occurrence, assuming qubit decoherence worst case value.

A lot remains to be done. First of all, a process logic, as classically associated to labelled transition
systems [12], i.e. a modal logic with label-indexed modalities, can be designed for pointed PTLS. This
will provide not only yet another behavioural equivalence, based on the set of formulas satisfied by two
systems, but also a formal way to express safety and liveness properties of these systems.

This will be extremely useful to express and verify properties related to the effectiveness of quantum
circuits, therefore pushing further the application scenario proposed in section 5. Finally, automating the
construction of a pointed PLTS for a given circuit, parametric on the different qubit coherence and gate
execution time found experimentally, and adding a prover for the logic suggested above, will provide an
interesting basis to support quantum circuit optimization. Reliable, mathematically sound approaches
and tools to support quantum computer programming and verification will be part of the quantum re-
search agenda for the years to come. Indeed, their lack may put at risk the expected quantum advantage
of the new hardware.

Cruz, Madeira & Barbosa 36

References
[1] Agudelo, J.C.A., Carnielli, W.A.: Paraconsistent machines and their relation to quantum computing. J. Log.

Comput. 20(2), 573–595 (2010)
[2] Akama, S. (ed.): Towards Paraconsistent Engineering, Intelligent Systems Reference Library, vol. 110.

Springer (2016)
[3] Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational theories of communicating pro-

cesses. Cambridge Tracts in Theoretical Computer Science (50), Cambridge University Press (2010)
[4] Chiara, M.L.D., Giuntini, R.: Paraconsistent ideas in quantum logic. Synth. 125(1-2), 55–68 (2000)
[5] da Costa, N.C.A., Krause, D., Bueno, O.: Paraconsistent logics and paraconsistency. In: Jacquette, D. (ed.)

Handbook of the Philosophy of Science (Philosophy of Logic). pp. 791–911. Elsevier (2007)
[6] da Costa, N.C.A., Krause, D.: Physics, inconsistency, and quasi-truth. Synth. 191(13), 3041–3055 (2014)
[7] Cruz, A., Madeira, A., Barbosa, L.S.: A logic for paraconsistent transition systems. In: Indrzejczak, A.,

Zawidzki, M. (eds.) Proceedings of the 10th International Conference on Non-Classical Logics. Theory
and Applications, NCL 2022, Łódź, Poland, 14-18 March 2022. EPTCS, vol. 358, pp. 270–284 (2022).
https://doi.org/10.4204/EPTCS.358.20, https://doi.org/10.4204/EPTCS.358.20

[8] Cruz, A.L.R.: Exploring paraconsistent logics for quantum programs. MSc Thesis in Engineering Physics,
DI, Universidade do Minho (2021)

[9] Jaśkowski, S.: Propositional calculus for contradictory deductive systems. Studia Logica 24(1), 143–157
(1969)

[10] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (10th Anniversary Edition).
Cambridge University Press (2010)

[11] Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2(79), 87–95 (2018)
[12] Stirling, C.: Modal and Temporal Properties of Processes. Texts in Computer Science, Springer (2001)
[13] Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.

(eds.) Handbook of Logic in Computer Science (vol. 4): Semantic Modelling, pp. 1–148. Oxford Science
Publications (1995)

[14] Zhang, Y., Deng, H., Li, Q., Song, H., Nie, L.: Optimizing quantum programs against decoherence: Delaying
qubits into quantum superposition. In: 2019 Int. Symp. Theoretical Aspects of Software Engineering (TASE).
IEEE (Jul 2019)

https://doi.org/10.4204/EPTCS.358.20

© E. Grilo & B. Lopes
This work is licensed under the
Creative Commons Attribution License.

ReLo: a dynamic logic to reason about Reo circuits*

Erick Grilo
Instituto de Computação

Universidade Federal Fluminense

simas grilo@id.uff.br

Bruno Lopes
Instituto de Computação

Universidade Federal Fluminense

bruno@ic.uff.br

Critical systems require high reliability and are present in many domains. They are systems in which
failure may result in financial damage or even loss of lives. Standard techniques of software engineer-
ing are not enough to ensure the absence of unacceptable failures and/or that critical requirements
are fulfilled. Reo is a component-based modelling language that aims to provide a framework to
build software based on existing pieces of software, which has been used in a wide variety of do-
mains. Its formal semantics provides grounds to certify that systems based on Reo models satisfy
specific requirements (i.e., absence of deadlocks). Current logical approaches for reasoning over Reo
require the conversion of formal semantics into a logical framework. ReLo is a dynamic logic that
naturally subsumes Reo’s semantics. It provides a means to reason over Reo circuits. This work
extends ReLo by introducing the iteration operator, and soundness and completeness proofs for its
axiomatization.The core aspects of this logic are also formalized in the Coq proof assistant.

1 Introduction

In software development, service-oriented computing [31] and model-driven development [6] are ex-
amples of techniques that take advantage of software models. The first technique advocates computing
based on preexisting systems (services) as described by Service-Oriented Architecture (SOA), while the
latter is a development technique that considers the implementation of a system based on a model. A
model is an abstraction of a system (or some particular portion of it) in a specific language, which will
be used as a specification basis for the system’s implementation. It can be specified in languages such
as Unified Modeling Language (UML) or formal specification languages like B [1] or Alloy [16]. Re-
searchers also have applied approaches such as formal methods in software development to formalize
and assure that certain (critical) systems have some required properties [19, 30].

Reo [2] is a prominent modelling language, enabling coordination of communication between in-
terconnected systems without focusing on their internal properties. Reo models are compositionally
built from base connectors, where each connector in Reo stands for a specific communication pattern.
Reo has proven to be successful in modeling the organization of concurrent systems’ interaction, being
used in a variety of applications, from process modeling to Web-Services integration [4] and even in the
construction of frameworks to verify specifications in Reo [22, 34].

Reo’s ability to model communication between software interfaces has also attracted research on
verification of Reo circuits, resulting in many different formal semantics [17] like automata-based mod-
els [3, 7, 23], coalgebraic models [2], Intuitionistic Logic with Petri Nets [12] (to name a few), and some
of their implementations [22, 33, 35, 26, 29, 36, 23]. However, as far as the authors are concerned, there
is no logic apart from ReLo [13] to specific reason about Reo models naturally, where the usage of other
logic-based approaches requires conversion between different formal semantics.

*This work was supported by CNPq and FAPERJ.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

E. Grilo & B. Lopes 38

This work extends ReLo [13] by introducing an iteration operator and the soundness and complete-
ness proofs of its axiomatic system. A prototypical implementation of this framework in Coq proof
assistant, enabling the verification of properties of Reo programs in ReLo within a computerized envi-
ronment is available at http://github.com/frame-lab/ReoLogicCoq.

This work is structured as follows. Section 3 discusses briefly a related logic formalism with the
one hereby proposed and introduces Reo modelling language, along with some examples. Section 4
discuss ReLo’s main aspects, from its core definitions (such as language, models, transitions firing) and
its soundness and completeness proofs. Finally, Section 5 closes the work by discussing the obtained
results and assessing possible future work.

2 Related work

The fact that Reo can be used to model many real-world situations has attracted attention from researchers
all around the world, resulting in a great effort directed in formalizing means to verify properties of Reo
models [18, 32, 20, 22, 28, 27, 17]. Such effort also resulted in the proposal of several formal semantics
for this modelling language [17], varying from operational semantics to coalgebric models.

One of the most known formal semantics for Reo consists of Constraint Automata [8], an operational
semantic in which Reo connectors are modelled as automata for T DS-languages [5]. It enables reasoning
over the data flow of Reo connectors and when they happened. Constraint Automata have been extended
to some variants which aim to enrich the reasoning process by capturing properties like the timing of the
data flows or possible actions over the data, respectively as Timed Constraint Automata [22] and Action
Constraint Automata [21]. Some of them are briefly discussed below, along with other formal semantics
for Reo.

The approach presented by Klein et al. [18] provides a platform to reason about Reo models using
Vereofy,1 a model checker for component-based systems, while Pourvatan et al. [32] propose an ap-
proach to reason about Reo models employing symbolic execution of Constraint Automata. Kokash &
Arbab [20] formally verify Long-Running Transactions (LRTs) modelled as Reo connectors using Vere-
ofy, enabling expressing properties of these connectors in logics such as Linear Temporal Logic (LTL)
or a variant of Computation Tree Logic (CTL) named Alternating-time Stream Logic (ASL). Kokash et
al. [22] use mCRL2 to encode Reo’s semantics in Constraint Automata and other automata-based seman-
tics, encoding their behaviour as mCRL2 processes and enabling the expression of properties regarding
deadlocks and data constraints which depend upon time. mCRL2 also supports model-checking of Reo
in a dynamic logic (with fixed points), where modalities are regular expressions, atomic actions are sets
of nodes that fire at the same time. Mouzavi et al. [28] propose an approach based on Maude to model
checking Reo models, encoding Reo’s operational semantics of the connectors.

Proof assistants have been used to reason about Reo connectors [25, 26, 29, 35, 36, 14]. The ap-
proaches adopted by Li et al. [25, 35, 14] are among the ones that employ Coq to verify Reo models
formally. In [25] a formalization of four of the Reo canonical connectors (Sync, FIFO1, SyncDrain,
and LossySync) along with an LTL-based language defined as an inductive type in Coq is presented,
while [35] proposes the formalization of five Reo canonical channels and a procedure that creates com-
posite channels by logical conjunction of the connectors modelled.

In [14], a framework to provide means of graphically model Reo connectors and validate the gener-
ated model in Constraint Automata using Coq and NuSMV2 is discussed. It also enables the automatic

1http://www.vereofy.de
2https://nusmv.fbk.eu/

http://github.com/frame-lab/ReoLogicCoq
http://www.vereofy.de
https://nusmv.fbk.eu/

E. Grilo & B. Lopes 39

generation of Coq code to a Haskell model employing the Coq code extraction apparatus. When re-
stricting the works considering logics and Reo, as far as the authors know there is only the work by [12]
which focuses on formalizing the semantics of Reo connectors Sync, LossySync, FIFO1, SyncDrain,
AsyncDrain, Filter, Transform, Merger, and Replicator in terms of zero-safe Petri nets [11], a special
class of Petri-nets with two types of places: zero and stable places. This encoding is then converted to
terms in Intuitionistic Temporal Linear Logic, enabling reasoning about Reo connectors in this logic.

3 Background

This section provides a succinct overview of Reo [2, 3], considering its main characteristics and a mod-
elling examples as it is the target language ReLo provides a formal semantic to reason over.

3.1 The Reo modelling language

As a coordination model, Reo focuses on connectors, their composition, and how they behave, not fo-
cusing on particular details regarding the entities that are connected, communicate, and interact through
those connectors. Connected entities may be modules of sequential code, objects, agents, processes, web
services, and any other software component where its integration with other software can be used to build
a system [2]. Such entities are defined as component instances in Reo.

Channels in Reo are defined as a point-to-point link between two distinct nodes, where each channel
has its unique predefined behavior. Each channel in Reo has exactly two ends, which can be of the
following types: the source end, which accepts data into the channel, and the sink end, which dispenses
data out of the channel. Channels are used to compose more complex connectors, being possible to
combine user-defined channels amongst themselves and with the canonical connectors provided by Baier
et al. [8]. Figure 1 shows the basic set of connectors as presented by Kokash et al. [22].

A B

(a) Sync

A B

(b)
LossySync

A B

(c) FIFO

A B

(d)
SyncDrain

A B

(e)
AsyncDrain

A B

(f) Filter

A B

(g) Transform

A

B
C

(h) Merger

A
B

C

(i) Replicator

Figure 1: Canonical Reo connectors

Channel ends can be used by any entity to send/receive data, given that the entity belongs to an
instance that knows these ends. Entities may use channels only if the instance they belong to is connected
to one of the channel ends, enabling either sending or receiving data (depending on the kind of channel
end the entity has access to).

The bound between a software instance and a channel end is a logical connection that does not rely
on properties such as the location of the involved entities. Channels in Reo have the sole objective to
enable the data exchange following the behaviour of the connectors composing the channel, utilizing I/O
operations predefined for each entity in an instance. A channel can be known by zero or more instances
at a time, but its ends can be used by at most one entity at the same time.

E. Grilo & B. Lopes 40

Figure 2 introduces a Reo connector known as Sequencer3. It models the data flow between three
entities sequentially. The data flows from the first FIFO connector (a buffer), which will be sequentially
synchronized with entities in port names names A, B, and C. The Sequencer can be used to model
scenarios where processes sequentially interact between themselves.

X Y

A

W

B

Z

C

Figure 2: Modelling of the Sequencer in Reo

In short, Reo circuits may be understood as data flowing from different interfaces (i.e., port names
connected to a node), where the connector itself models the communication pattern between two of these
interfaces. A ReLo program is composed of one or more Reo connectors as introduced in Figure 1.

4 A ReLo Primer

ReLo [13] was tailored to subsume Reo models’ behaviour naturally in a logic, without needing any
mechanism to convert a Reo model denoted by one of its formal semantics to some logical framework.
Each basic Reo connector is modelled in the logic’s language, which is defined as follows.

Definition 1 (ReLo’s language). The language of ReLo consists of the following:

• An enumerable set of propositions Φ.
• Reo channels as denoted by Figure 1
• A set of port names N
• A sequence SeqΠ = {ε,s1,s2, . . .} of data flows in ports of a ReLo program Π (defined below).

We define si ≤ s j if si is a proper (i.e., s j contains all of si’s data). Each sequence si denotes the
data flow of the Reo program Π (i.e., all ports that have data synchronized at a specific moment in
time) and ε is the empty sequence

• Program composition symbol : ⊙
• A sequence t of data flows of ports p with data values {0,1}, which denotes whether p contains a

data item. This describes a data flow occurring in the Reo channel. A BNF describing t is defined
as follows:
⟨t⟩ ::= ⟨portName⟩ ⟨data⟩ , ⟨t⟩ | ⟨data⟩ ⟨portName⟩ ⟨data⟩ , ⟨t⟩

| ⟨data⟩ ⟨portName⟩ ⟨data⟩ | ⟨portName⟩ ⟨data⟩
⟨portName⟩ ::= p ∈N
⟨data⟩ ::= 0 | 1

• Iteration operator ⋆

A ReLo program is defined as any Reo model built from the composition of Reo channels πi. In ReLo
their composition is Π = (f ,b), Π = π1⊙π2⊙·· ·⊙πn, and πi = (f1,b1). ⊙ follows the same notion of
Reo composition, by “gluing” sink nodes of a connector to the source nodes of the other connector.

3http://arcatools.org/reo

http://arcatools.org/reo

E. Grilo & B. Lopes 41

The set f is the set of connectors p of the model where data flows in and out of the channel (the
connector has at least a source node and a sink node), namely Sync, LossySync, FIFO, Filter, Transform,
Merger and Replicator. The set b is the set of blocking channels (channels without sink nodes whose
inability to fire prevents the remainder of connectors related to their port names from fire), namely
SyncDrain and AsyncDrain.

The following is a simple yet intuitive example of the structure of data flows in ReLo. Let the
sequence t be t = {A1,B1C}. It states that the port A has the data item 1 in its current data flow, while
there is a data item 1 in the FIFO between B and C.

Definition 2 (ReLo formulae).
We define formulae in ReLo as follows: φ = p | ⊤ | ¬φ | φ ∧ψ | ⟨t,π⟩φ , such that p ∈ Φ. We use the
standard abbreviations⊤≡¬⊥,φ ∨ψ ≡¬(¬φ ∧¬ψ),φ →ψ ≡¬φ ∨ψ and [t,π]ϕ ≡¬⟨t,π⟩¬φ , where
π is some Reo program and t a data flow.

The connectors in Figure 3 exemplify compound Reo connectors. The model SyncFIFO is composed
of a FIFO and a Sync connector in which the data leaving the FIFO is sent to C from B synchronously.
Suppose that there is data in the FIFO and in port B (t = {A1B,B0}). If the FIFO from A to B is processed
first then the Sync between B and C, the data flow in B will be overwritten before it is sent to C, which is
not the correct behaviour. The Sync from B to C must fire before the FIFO from A to B.

Another example is denoted by the model Sync2Drain. Suppose there is data only in port name
A (t = {A1}). If the Sync from B to A is evaluated first then the SyncDrain between B and C, the
restriction imposed by the fact that the condition required for the SyncDrain to fire was not met (as C’s
data flow differs from B’s at this moment) is not considered, and data will wrongly flow from B to A.
The SyncDrain must be first evaluated before all flows as they may block the flow from data of its ports
to other channels.

A B C

(a) SyncFIFO

A B C

(b) Sync2Drain

Figure 3: Examples of Reo models

The next definition maps each canonical connector that composes a Reo model to a ReLo program.
The left hand side of each mapping rule in Definition 3 is the atomic Reo connector, while the right hand
size is the resulting ReLo atomic program πi = (fi,bi), with the same behaviour as of the Reo connector.

Definition 3 (parse base cases). Each canonical Reo connector is mapped to a ReLo program in parse:

• A B to A→ B
• A B to (A,A→ B)
• A B to f i f o(A,B)
• A B to SBlock(A,B)
• A B to ABlock(A,B)
• A B to Trans f orm(f ,A,B), f : Data→ Data is a transformation function.
• A B to Filter(P,A,B), P is a logical predicate over the data item in A.

• A

B
C

to (A→C,B→C)

•
A

B

C

to (A→ B,A→C)

E. Grilo & B. Lopes 42

Considering that each ReLo program Π is the composition of programs π1 ⊙ π2,⊙·· · ⊙ πn,πi =
(fi,bi) as Reo programs, parse is formalized in Definition 4. The symbol ◦ denote the addition of an
element to s, the resulting set of parse’s processing.

Definition 4 (parse function). The function that interprets the execution of a ReLo program is defined
as parse(f ,b,s). We define ε as an abbreviation to denote when there is no ReLo program left to process
(i.e. the base case when no program is parametrized). Its outcome is detailed as below.

• s, if f = b = ε

• parse(f j,b,s◦A→ B), if f = A B ⊙ f j

– s◦A→ B, if f = A B

• parse(f j,b,s◦ (A,A→ B)), if f = A B ⊙ f j

– s◦ (A,A→ B), if f = A B

• parse(f j,b,s)◦ f i f o(A,B), if f = A B ⊙ f j

– (s◦ f i f o(A,B)), if f = A B

• SBlock(A,B)◦ parse(f ,b j,s), if b = A B ⊙b j

– (SBlock(A,B)◦ s), if b = A B

• ABlock(A,B)◦ parse(f ,b j,s), if b = A B ⊙b j

– (ABlock(A,B)◦ s), if b = A B

• parse(f j,b,s◦Trans f orm(f ,A,B)), if f = A B ⊙ f j

– (Trans f orm(f ,A,B)◦ s), if f = A B

• parse(f j,b,s◦Filter(P,A,B)), if f = A B ⊙ f j

– (Filter(P,A,B)◦ s), if f = A B

• parse(f j,b,s◦ (A→C,B→C)), if f = A

B
C ⊙ f j

– (s◦ (A→C,B→C)), if f = A

B
C

• parse(f j,b,s◦ (A→ B,A→C)), if f = A
B

C
⊙ f j

– (s◦ (a→ b,a→ c)), if f = A
B

C

We employ parse to interpret Reo programs Π as a sequence of occurrences of possible data flow
(where each flow corresponds to the execution of a Reo connector). These data flow may denote data
transfer (ReLo programs (A→B) and (A,A→B), flow “blocks” induced by connectors such as SyncDrain
and aSyncDrain (ReLo programs SBlock(A,B) and ABlock(A,B) — the first one requires that data flow
synchronously through its ports, while the latter requires that data flow asynchronously through its ports).
There is also the notion of a buffer introduced by FIFO connectors (ReLo program f i f o(A,B)), which
data flow into a buffer before flowing out of the channel, and merging/replicating data flow between
ports, respectively denoted by channels Merger and Replicator (ReLo programs (A→ C,B→ C) and
(A→ B,A→C) respectively).

There are also special data flows, denoting the “transformation” of some data flowing from A to B as
Trans f orm(f ,A,B) which will apply f with the data in A before it sends f (DA) (DA denoting the data

E. Grilo & B. Lopes 43

item in A) to B, and the filtering of data flow by some predicate as Filter(P,A,B), P as a quantifiable-free
predicate over the data item seen in A. Therefore, data will flow to B only if P(DA) is satisfied.

After processing π with parse, the interpretation of the execution of π is given by go(t,s,acc),go : s×
s→ s, where s is a string denoting the processed program π as the one returned by parse, and t is the
initial data flow of ports of the Reo program π . The parameter acc holds all connectors of the Reo circuit
that satisfy their respective required conditions for data to flow. In what follows we define ax ≺ t as an
operator which states that ax is in t, ax a single data of a port and t a structure containing data flows for
ports p ∈N .

Example 1 shows how parse functions and illustrates why it is necessary. The programs that depict
the FIFO connectors from Fig. 2 are the last programs to be executed, while the ones that denote “imme-
diate” flow (the Sync channels) come first. This is done to preserve the data when these connectors fire
(if eligible). Suppose that there is a data item in the buffer between X and Y and a data item in Y (i.e.,
t = X1Y,Y 0). If the data item leaves the buffer first then the data item in Y, the latter will be overwritten
and the information is lost.

Example 1. let π be the Reo program corresponding to the circuit in Fig. 2:
π = X Y ⊙ Y A ⊙ Y W ⊙ W B ⊙ W Z

⊙ Z C ⊙ Z X

parse(π,{}) = {Y → A;W → B;Z→C;Z→ X ; f i f o(X ,Y); f i f o(Y,W); f i f o(W,Z)}
The usage of parse is required to eliminate problems regarding the execution order of π’s Reo chan-

nels, which could be caused by processing π the way it is inputted (i.e., its connectors can be in any
order). Consider, for example, the behavior of SyncDrain and aSyncDrain programs as “blocking” pro-
grams as discussed earlier. In a single step, they must be evaluated before the flow programs, because
if they fail to execute due to missing requirements, data should not flow from their port names to other
connectors. In a nutshell, parse organizes the program so this verification can be performed.

Therefore, the interpretation of a π program processed by parse is performed by go(t,s,acc), where
s is a string containing π as processed by parse, t is π’s initial data flow, and acc filters the connectors
of the ReLo program that can be fired if the requirements to do so are met.

Definition 5 will check for each of the Reo connectors processed by parse satisfies the required
condition to fire, following the connectors’ behaviour. Operator ≺ denotes whether the data flow is
within the current data flow t being evaluated. It is also used to denote whether the program currently
being evaluated in s repeats in Π. Operator \ denotes the removal of an connector from the accumulator
acc.

Definition 5 (Relation go for a single execution step). We define go(t,s,acc) as follows:

• s = ε : f ire(t,acc)
• s = A→ B◦ s′ :

– go(t,s′,acc◦ (A→ B)), iff Ax≺ t,(A→ B)⊀ s′

– go(t,s′,(acc◦ (A→ B))\ s′j)∪go(t,s′,acc), iff


Ax≺ t,
(A→ B)⊀ s′

∃s′j ∈ acc | sink(s′j) = B
– go(t,s′,acc), otherwise

• s = (A,A→ B)◦ s′ :
– go(t,s′,acc◦ (A→ B))∪go(t,s′,acc◦ (A→ A)), iff Ax≺ t,(A→ B)⊀ s′

E. Grilo & B. Lopes 44

– go(t,s′,(acc◦ (A→ B))\ s′j)∪go(t,s′,acc), iff


Ax≺ t,
(A→ B)⊀ s′

∃s′j ∈ acc | sink(s′j) = B
– go(t,s′,acc), otherwise

• s = f i f o(A,B)◦ s′ :
– go(t,s′,acc◦ (AxB)), iff Ax≺ t, f i f o(A,B)⊀ s′,(AxB)⊀ acc
– go(t,s′,acc◦ (AxB→ Bx)), iff AxB≺ t, f i f o(A,B)⊀ s′

– go(t,s′,(acc◦ (AxB→ Bx))\ s′j)∪go(t,s′,acc), iff


AxB≺ t,
f i f o(A,B)⊀ s′,
∃s′j ∈ acc | sink(s′j) = B

– go(t,s′,acc), otherwise
• s = Sblock(A,B)◦ s′ :

– go(t,s′,acc), iff

{
(Ax≺ t ∧Bx≺ t)∨ (Ax ⊀ t ∧Bx ⊀ t)
Sblock(A,B)⊀ s′

– go(t,halt(A,B,s′),acc), iff

{
(Ax≺ t ∧Bx ⊀ t)∨ (Ax ⊀ t ∧Bx≺ t)
Sblock(A,B)⊀ s′

• s = Ablock(A,b)◦ s′ :

– go(t,s′,acc), iff

{
(Ax ⊀ t ∧Bx≺ t)∨ (Ax≺ t ∧Bx ⊀ t)∨
(Ax ⊀ t ∧Bx ⊀ t),Ablock(A,B)⊀ s′

– go(t,halt(A,B,s′),acc), iff

{
(Ax≺ t ∧Bx≺ t),
Ablock(A,B)⊀ s′

• s = Trans f orm(f ,A,B)◦ s′ :

– go(t,s′,acc◦ (f (DA)→ B)), iff

{
ax≺ t
Trans f orm(f ,A,B)⊀ s′

– go(t,s′,(acc◦ (f (DA)→ B))\ s′j)∪go(t,s′,acc), iff


Ax≺ t,
Trans f orm(f ,A,B)⊀ s′

∃s′j ∈ acc | sink(s′j) = B
– go(t,s′,acc), otherwise

• s = Filter(f ,A,B)◦ s′ :

– go(t,s′,acc◦ (A→ B)), iff


Ax≺ t
P(DA) holds
Filter(f ,A,B)⊀ s′

– go(t,s′,(acc◦ (A→ B))\ s′j)∪go(t,s′,acc), iff


Ax≺ t,
P(DA) holds
Filter(f ,A,B)⊀ s′

∃s′j ∈ acc | sink(s′j) = B
– go(t,s′,acc), otherwise

The existing condition after each return condition of go denotes the case where two or more Reo
connectors within a circuit have the same sink node. This implies that if both of their respective source

E. Grilo & B. Lopes 45

nodes have data flowing simultaneously, their sink nodes will have data flowing nondeterministically.
Such condition models this scenario, considering when both cases may happen as two nondeterministic
“distinct” possible executions. Therefore, the operation acc◦ (X →Y))\ s′j removes every interpretation
of s′ which sink node equals Y , while go(t,s′,acc) denotes an execution containing the removed s′j but
not considering X→Y . The return condition s = ε denotes that the program as a whole has already been
processed.

Considering the cases including block programs induced by SyncDrain and AsyncDrain connectors,
halt(A,B,s′) is defined as a supporting function that will be used in the case the block program conditions
fail. Then, data flow that was in the ports of the SyncDrain/AsyncDrain evaluated cannot be further
considered in this execution steps: channels that have their sink node pointed to A or B.

Intuitively, go is a function that processes a program π with input t as the program’s data initially
available at ports p ∈ π and returns the next data configuration after processing all connectors and ver-
ifying whether they are eligible for data to flow. The return of go depends on a function f ire which is
bound to return the final configuration of the Reo circuit after an iteration (i.e., the last ports that data
flow). We define sink(s′j) as the sink node of a connector, in this case, the port name where a data item
flowing into a Reo connector is bound to. The operation denoted by ∪ is the standard set union.

Definition go employs a function named f ire : T × s→ T which returns the firing of all possible data
flows in the Reo connector, given the Reo program π and an initial data flow on ports of π . The set T
is the set of possible data flows as constructed by the BNF grammar in Definition 1. The function f ire
returns the resulting data flow of this execution step by considering the program processed by go as s and
the current step’s data flow t. Parameter s contains ReLo programs as yielded by parse.

Definition 6 (Data marking relation f ire).

f ire(t,s) =



ε, if s = ε

AxB◦ f ire(t,s′), if s = (AxB)◦ s′ and Ax≺ t
B(f (a))◦ f ire(t,s′), if s = (f (DA)→ B)◦ s′ and Ax≺ t

Bx◦ f ire(t,s′), if

{
s = (A→ B)◦ s′ and Ax≺ t,or
s = (AxB→ Bx)◦ s′ and axb≺ t

(1)

We define fReLo as the transition relation of a ReLo model. It denotes how the transitions of the model
fire, i.e., given an input t and a program π denoting a Reo circuit, fReLo(t,π) interfaces with go to return
the resulting data flow of π given that data depicted by t are flowing in the connector’s ports.

Definition 7. Transition relation fReLo(t,π) = go(t,(parse(π, [])), [])

We define fReLo(t,π⋆) as the application of fReLo(t,π) iteratively for the (nondeterministic finite)
number of steps denoted by ⋆, starting with t with π , and considering the obtained intermediate t ′ in the
steps.

A ReLo frame is a structure based on Kripke frames [24] formally defined as a tuple F = ⟨S,Π,RΠ,δ ,λ ⟩,
where each element of F is described by Definition 8.

Definition 8 (ReLo frame). S is a non-empty enumerable set of states and Π a Reo program.

• RΠ ⊆ S×S is a relation defined as follows.
– Rπi = {uRπiv | fReLo(t,πi) ≺ δ (v), t ≺ δ (u)}, πi is any combination of any atomic program

which is a subprogram of Π.
– Rπ⋆

i
= R⋆

πi
, the reflexive transitive closure (RTC) of Rπi .

E. Grilo & B. Lopes 46

• λ : S×N → R is a function that returns the time instant a data item in a data markup flows
through a port name of N .

• δ : S→ T , is a function that returns data in ports of the circuit in a state s ∈ S, T being the set of
possible data flows in the model.

From Definition 8, a ReLo model is formally defined as a tuple M = ⟨F ,V⟩ by Definition 9. In-
tuitively, it is a tuple consisting of a ReLo frame and a valuation function, which given a state w of the
model and a propositional symbol ϕ ∈Φ, maps to either true or f alse.

Definition 9 (ReLo models). A model in ReLo is a tuple M = ⟨F ,V⟩, where F is a ReLo frame and
V : S×Φ→{true, f alse} is the model’s valuation function

Definition 10 (Satisfaction notion).

• M ,s ⊩ p iff V (s, p) = true
• M ,s ⊩⊤ always
• M ,s ⊩ ¬ϕ iff M ,s ⊮ ϕ

• M ,s ⊩ ϕ1∧ϕ2 iff M ,s ⊩ ϕ1 and M ,s ⊩ ϕ2
• M ,s ⊩ ⟨t,π⟩ϕ if there exists a state w ∈ S, sRπw, and M ,s ⊩ ϕ

We denote by M ⊩ ϕ if ϕ is satisfied in all states of M . By ⊩ ϕ we denote that ϕ is valid in any state
of any model.

We recover the circuit in Fig. 2 as an example. Let us consider s = DX , (i.e. t = D1) and the
Sequencer’s corresponding model M . Therefore, M ,DX ⊩ ⟨t,π⟩p holds if V (DX f i f oY , p) = true as
DX f i f oY is the only state where DX RΠDX f i f oY . For example, one might state p as “There is no port with
any data flow”, hence V (DX f i f oY , p) = true.

As another usage example, we formalize some properties which may be interesting for this connector
to have. Let us consider that the data markup is t = X1, M the model regarding the Sequencer, and the
states’ subscript denoting which part of the connector has data. The following example state that for this
data flow, after every single execution of π , it is not the case that the three connected entities have their
data equal to 1 simultaneously, but it does have data in its buffer from X to Y .

Example 2. [X1,π]¬(DA = 1∧DB = 1∧DC = 1)∧ t ′ = X1Y , where t ′ = fReLo(t,π)
M ,DX ⊩ [X1,π]¬(DA = 1∧DB = 1∧DC = 1)∧ t ′ = X1Y .
M ,D X Y ⊩ ¬(DA = 1∧DB = 1∧DC = 1)∧ t ′ = X1Y .
M ,D X Y ⊩ ¬(DA = 1∧DB = 1∧DC = 1) and M ,D X Y ⊩ t ′ = X1Y .

The notion of M ,DX ⊩ ⟨t,π⋆⟩p holds if a state s is reached from DX by means of R⋆
π with V (s, p) =

⊤. If we state p as “the data item of port X equals 1”, it holds because DX R⋆
πDX and V (DX , p) = ⊤. If

there is an execution of π that lasts a nondeterministic finite number of iterations, and there is data in C
equals to 1, then there is an execution under the same circumstances where the same data has been in B.

Example 3. ⟨t,π⋆⟩DC = 1→ ⟨t,π⋆⟩DB = 1
M ,DX ⊩ ⟨t,π⋆⟩DC = 1→ ⟨t,π⋆⟩DB = 1
M ,DX ⊩ ¬(⟨t,π⋆⟩DC = 1)∨⟨t,π⋆⟩DB = 1
M ,DX ⊩ [t,π⋆]¬DC = 1∨⟨t,π⋆⟩DB = 1
M ,DX ⊩ [t,π⋆]¬DC = 1 or M ,DX ⊩ ⟨t,π⋆⟩DB = 1
M ,DX ⊩ ⟨t,π⋆⟩DB = 1, because M ,DB ⊩ DB = 1 and DX Rπ⋆RB.

E. Grilo & B. Lopes 47

4.1 Axiomatic System

We define an axiomatization of ReLo, discuss its soundness and completeness.

Definition 11 (Axiomatic System).

(PL) Enough Propositional Logic tautologies
(K) [t,π](ϕ → ψ)→ ([t,π]ϕ → [t,π]ψ)

(And) [t,π](ϕ ∧ψ)↔ [t,π]ϕ ∧ [t,π]ϕ
(Du) [t,π]ϕ ↔¬⟨t,π⟩¬ϕ

(R) ⟨t,π⟩ϕ ↔ ϕ iff fReLo(t,π) = ε

(It) ϕ ∧ [t,π][t(f ,b),π
⋆]ϕ ↔ [t,π⋆]ϕ , t(f ,b) =

fReLo(t,π)
(Ind) ϕ ∧ [t,π⋆](ϕ → [t(f ,b)⋆ ,π]ϕ)→ [t,π⋆]ϕ ,

t(f ,b)⋆ = fReLo(t,π⋆)

(MP) ϕ ϕ → ψ

ψ

(Gen)
ϕ

[t,π]ϕ

Lemma 1 (Soundness). Proof.
Axioms (PL), (K), (And) and (Du) are standard in Modal Logic literature, along with rules (MP) and
(Gen) [15]. Axiom (It) and (Ind) are similar from PDL. (R): ⟨t,π⟩ϕ ↔ ϕ iff fReLo(t,π) = ε

Suppose by contradiction that exists a state s from a model M = ⟨S,Π,RΠ,δ ,λ ,V ⟩ where (R) does not
hold. There are two possible cases.
(⇒) Suppose by contradiction M ,s ⊩ ⟨t,(f ,b)⟩ϕ and M ,s ⊮ ϕ . M ,s ⊩ ⟨t,(f ,b)⟩ϕ iff there is a state
v ∈ S such that sRπv. Because fReLo(t,(f ,b)) = ε,s = v (i.e., in this execution no other state is reached
from s). Therefore, M ,s ⊩ ϕ , contradicting M ,s ⊮ ϕ .
(⇐) Suppose by contradiction M ,s ⊩ ϕ and M ,s ⊮ ⟨t,(f ,b)⟩ϕ . In order to M ,s ⊮ ⟨t,(f ,b)⟩ϕ , for
every state v ∈ S such that sRπv, M ,v ⊮ ϕ . Because fReLo(t,(f ,b)) = ε,s = v (i.e., in this execution no
other state is reached from s). Therefore, M ,v ⊮ ϕ , contradicting M ,v ⊩ ϕ .

4.2 Completeness

We start by defining the Fisher-Ladner closure of a formula as the set closed by all of its subformulae,
following the idea employed in other modal logic works [15, 9] as follows.

Definition 12 (Fisher-Ladner Closure). Let Φ be a the set of all formulae in ReLo. The Fischer-Ladner
closure of a formula, notation FL(ϕ) is inductively defined as follows:

• FL : Φ→ 2Φ

• FL(f ,b) : {⟨t,(f ,b)⟩ϕ}→ 2Φ, where (f ,b) is a ReLo program and ϕ a ReLo formula.

These functions are defined as

• FL(p) = {p}, p an atomic proposition;
• FL(ϕ → ψ) = {ϕ → ψ}∪FL(ϕ)∪FL(ψ)
• FL(f ,b)(⟨t,(f ,b)⟩ϕ) = {⟨t,(f ,b)⟩ϕ}
• FL(⟨t,(f ,b)⟩ϕ) = FL(f ,b)((⟨t,(f ,b)⟩ϕ)∪FL(ϕ)
• FL(f ,b)(⟨t,(f ,b)⋆⟩ϕ) = {⟨t,(f ,b)⋆⟩ϕ}∪FL(f ,b)(⟨t,(f ,b)⟩⟨t,(f ,b)⋆⟩ϕ)
• FL(⟨t,(f ,b)⋆⟩ϕ) = FL(f ,b)((⟨t,(f ,b)⋆⟩ϕ)∪FL(ϕ)

From the definitions above, we prove two lemmas that can be understood as properties that formulae
need to satisfy to belong to their Fisher-Ladner closure.

E. Grilo & B. Lopes 48

Lemma 2. If ⟨t,(f ,b)⟩ψ ∈ FL(ϕ), then ψ ∈ FL(ϕ)

Lemma 3. If ⟨t,(f ,b)⋆⟩ψ ∈ FL(ϕ), then ⟨t,(f ,b)⟩⟨t,(f ,b)⋆⟩ψ ∈ FL(ϕ)

The proofs for Lemmas 2 and 3 are straightforward from Definition 12. The following definitions
regard the definitions of maximal canonical subsets of ReLo formulae. We first extend Definition 12 to a
set of formulae Γ. The Fisher-Ladner closure of a set of formulae Γ is FL(Γ) =

⋃
ϕ∈Γ FL(ϕ). Therefore,

FL(Γ) is closed under subformulae. For the remainder of this section, we will assume that Γ is finite.

Lemma 4. If Γ is a finite set of formulae, then FL(Γ) also is a finite set of formulae

Proof. The proof is standard in literature [10]. Intuitively, because FL is defined recursively over a set
of formulae Γ into formulae ψ of a formula ϕ ∈ Γ, Γ being finite leads to the resulting set of FL(Γ) also
being finite (at some point, all atomic formulae composing ϕ will have been reached by FL).

Definition 13 (Atom). Let Γ be a set of consistent formulae. An atom of Γ is a set of formulae Γ′ that is
a maximal consistent subset of FL(Γ). The set of all atoms of Γ is defined as At(Γ).

Lemma 5. Let Γ a consistent set of formulae and ψ a ReLo formula. If ψ ∈ FL(Γ), and ψ is satisfiable
then there is an atom of Γ, Γ′ where ψ ∈ Γ′.

Proof. The proof follows from Lindembaum’s lemma. From Lemma 4, as FL(Γ) is a finite set, its
elements can be enumerated from γ1,γ2, . . . ,γn,n = |FL(Γ)|. The first set, Γ′1 contains ψ as the starting
point of the construction. Then, for i = 2, . . . ,n, Γ′i is the union of Γ′i−1 with either {γi} or {¬γi},
respectively whether Γ′i∪{γi} or Γ′i∪{¬γi} is consistent. In the end, we make Γ′ = Γ′n as it contains the
union of all Γi,1≤ i≤ n. This is summarized in the following bullets:

• Γ′1 = {ψ};

• Γ
′
i,=

{
Γ′i−1∪{γi}, if Γn−1∪{γn} is consistent
Γ′i−1∪{¬γi}, otherwise

for 1 < i < n;

• Γ =
⋃n

i=1 Γi

Definition 14 (Canonical relations over Γ). Let Γ a set of formulae, A,B atoms of Γ (A,B ∈ At(Γ)), Π a
ReLo program and ⟨t,(f ,b)⟩ϕ ∈ At(Γ). The canonical relations on At(Γ) is defined as SΓ

Π
as follows:

ASΓ
Π

B↔
∧

A∧⟨t,(f ,b)⟩
∧

B) is consistent , ASΓ
Π⋆B↔

∧
A∧⟨t,(f ,b)⋆⟩

∧
B) is consistent

Definition 14 states that the relation between two atoms of Γ, A and B is done by the conjunction of
the formulae in A with all formulae in B which can be accessed from A with a diamond formula, such
that this conjunction is also a consistent formula. Intuitively, it states that A and B are related in SΓ

Π
by

every formula ϕ of B which conjunction with A by means of a diamond results in a consistent scenario.
The following definition is bound to formalize the canonical version of δ as the data markup function.

Definition 15 (Canonical data markup function δ Γ
c).

Let F = {⟨t1,(f1,b1)⟩ϕ1,⟨t2,(f2,b2)⟩ϕ2, . . . ,⟨tn,(fn,bn)⟩ϕn} be the set of all diamond formula occurring
on an atom A of Γ. The canonical data markup is defined as δ Γ

c : At(Γ)→ T as follows:

• The sequence {t1, t2, . . . , tn} ⊆ δ (A) Therefore, {t1, t2, . . . , tn} ⊆ δ Γ
c (A). Intuitively, this states that

all the data flow in the set of formulae must be valid data markups of A, which leads to them to
also be valid data markups of δ Γ

c following Definition 14.
• for all programs π = (f ,b) ∈Π, fReLo((δ

Γ
c (A)),(f ,b))≺ δ Γ

c (B)↔ ASΓ
Π

B.

E. Grilo & B. Lopes 49

Definition 16 (Canonical model). A canonical model over a set of formulae Γ is defined as a ReLo model
M Γ

c = ⟨At(Γ),Π,SΓ
Π
,δ Γ

c ,λc,V Γ
c ⟩, where:

• At(Γ) is the set of states of the canonical model;
• Π is the model’s ReLo program;
• SΓ

Π
are the canonical relations over Γ;

• δ Γ
c is the canonical markup function;

• λc : At(Γ)×N →R;
• V Γ

c : At(Γ)×ϕ →{true, f alse}, namely V Γ
c (A, p) = {A ∈ At(Γ) | p ∈ A};

Lemma 6. For all programs π = (f ,b) that compose Π, t = δ Γ
c (A):

1. if fReLo(t,(f ,b)) ̸= ε , then fReLo(t,(f ,b))≺ δ Γ
c (B) iff ASΓ

Π
B.

2. if fReLo(t,(f ,b)) = ε , then (A,B) /∈ SΓ
Π

.

Proof. The proof for 1. is straightforward from Definition 15. The proof for 2. follows from axiom R.
Because fReLo(t,(f ,b)) = ε , no other state is reached from the current state, hence no state B related with
A by RΓ

Π
can be reached.

The following lemma states that canonical models always exists if there is a formula ⟨t,(f ,b)ϕ⟩ ∈
FL(Γ), a set of formulae Γ and a Maximal Consistent Set A ∈ At(Γ). This assures that given the required
conditions, a canonical model can always be built.

Lemma 7 (Existence Lemma for canonical models). Let A be an atom of At(Γ) and ⟨t,(f ,b)⟩ϕ ∈FL(Γ).
⟨t,(f ,b)⟩ϕ ∈ A ⇐⇒ ∃ an atom B ∈ At(Γ) such that ASΓ

Π
B, t ≺ δ Γ

c (A) and ϕ ∈ B.

Proof. ⇒ Let A ∈ At(Γ) ⟨t,(f ,b)⟩ϕ ∈ FL(Γ) and ⟨t,(f ,b)⟩ϕ ∈ A . Because A ∈ At(Γ), from Defini-
tion 15 we have t ≺ δ Γ

c (A). From Lemma 5 we have that if ψ ∈ FL(Γ) and ψ is consistent, then there
is an atom of Γ, Γ′ where ψ ∈ Γ′. Rewriting ϕ as (ϕ ∧ γ)∨ (ϕ ∧¬γ) (a tautology from Propositional
Logic), an atom B ∈ At(Γ) can be constructed, because either ⟨t,(f ,b)⟩(ϕ ∧ γ) or ⟨t,(f ,b)⟩(ϕ ∧¬γ) is
consistent. Therefore, considering all formulae γ ∈ FL(Γ), B ∈ At(Γ) is constructed with ϕ ∈ B and
A∧ (⟨t,(f ,b)⟩ϕ

∧
B. From Definition 14, ASΓ

Π
B.

⇐ Let A ∈ At(Γ) and ⟨t,(f ,b)⟩ϕ ∈ FL(Γ). Also, let B ∈ At(Γ), ASΓ
Π

B, t ≺ δ Γ
c (A), and ϕ ∈ B. As ASΓ

Π
B,

from Definition 14, ASΓ
Π

B↔ (A∧⟨t,(f ,b)⟩
∧

B), ∀ϕi ∈ B is consistent. From ϕ ∈ B, (A∧⟨t,(f ,b)⟩ϕ)
is also consistent. As A ∈ At(Γ) and ⟨t,(f ,b)ϕ ∈ FL(Γ), by Definition 13, as A is maximal, then
⟨t,(f ,b)⟩ϕ ∈ A.

The following lemma formalizes the truth notion for a canonical model M Γ
c , given a state s and a

formula ϕ . It formalizes the semantic notion for canonical models in ReLo.

Lemma 8 (Truth Lemma). Let M Γ
c = ⟨At(Γ),Π,SΓ

Π
,δ Γ

c ,λ ,V
Γ
c ⟩ be a canonical model over a formula γ .

Then, for every state A ∈ At(Γ) and every formula ϕ ∈ FL(γ): M Γ
c ,A ⊩ ϕ ⇐⇒ ϕ ∈ A.

Proof. The proof proceeds by induction over the structure of ϕ .

• Induction basis: suppose ϕ is a proposition p. Therefore, M Γ
c ,A ⊩ p. From Definition 16, M Γ

c ’s
valuation function is V Γ

c (p) = {A ∈ At(Γ) | p ∈ A}. Therefore, p ∈ A.
• Induction Hypothesis: Suppose ϕ is a non atomic formula ψ . Then, M Γ

c ,A ⊩ ψ ⇐⇒ ψ ∈ A, ψ a
strict subformula of ϕ .

• Inductive step: Let us prove it holds for the following cases (we ommit propositional operators):

E. Grilo & B. Lopes 50

– Case ϕ = ⟨t,(f ,b)⟩φ . Then, M Γ
c ,A ⊩ ⟨t,(f ,b)⟩φ ⇐⇒ ⟨t,(f ,b)⟩φ ∈ A:

→ Let M Γ
c ,A ⊩ ⟨t,(f ,b)⟩φ . From Definition 14, there is a state B where ASΓ

Π
B and φ ∈ B.

By Lemma 7, ⟨t,(f ,b)⟩φ ∈ A. Therefore, it holds.
← Let M Γ

c ,A ⊮ ⟨t,(f ,b)⟩φ . From Definition 16’s valuation function V Γ
c and Lemma 5, we

have M Γ
c ,A ⊩ ¬⟨t,(f ,b)⟩φ . Therefore, for every B where ASΓ

Π
B,M Γ

c ,B ⊩ ¬φ . From the
induction hypothesis, φ /∈ B. Hence, From Lemma 7, ⟨t,(f ,b)⟩φ /∈ A.

– Case ϕ = ⟨t,(f ,b)⋆⟩φ . Then, M Γ
c ,A ⊩ ⟨t,(f ,b)⋆⟩φ ⇐⇒ ⟨t,(f ,b)⋆⟩φ ∈ A:

→ Let M Γ
c ,A ⊩ ⟨t,(f ,b)⋆⟩φ . From Definition 14, there is a state B where ASΓ

Π⋆B and φ ∈ B.
By Lemma 7, ⟨t,(f ,b)⋆⟩φ ∈ A. Therefore, it holds.
← Let M Γ

c ,A ⊮ ⟨t,(f ,b)⋆⟩φ . From Definition 16’s valuation function V Γ
c and Lemma 5, we

have M Γ
c ,A ⊩ ¬⟨t,(f ,b)⋆⟩φ . Therefore, for every B where ASΓ

Π⋆B,M Γ
c ,B ⊩ ¬φ . From the

induction hypothesis, φ /∈ B. Hence, From Lemma 7, ⟨t,(f ,b)⋆⟩φ /∈ A.

We proceed by formalizing the following lemma, which is bound to show that the properties that
define ⋆ for regular ReLo models also holds in ReLo canonical models.

Lemma 9. Let A,B ∈ At(Γ) and Π a ReLo program. If ASΠ⋆B then AS⋆
Π

B

Proof. Suppose ASΠ⋆B. Define C = {C′ ∈ At(Γ) | AS⋆
Π

C} as the set of all atoms C′ which A reaches by
means of SΠ⋆ . We will show that B ∈ C. Let Cc be the maximal consistent set obtained by means of
Lemma 5, Cc = {

∧
C1 ∨C2 ∨ . . .

∧
Cn}, where the conjunction of each Ci is consistent, and each Ci is a

maximal consistent set. Also, define t = δ Γ
c (Cc) as the canonical markup of Cc.

Note that Cc ∧⟨t,(f ,b)⟩¬Cc is inconsistent: if it was consistent, then for some D ∈ At(Γ) which A
cannot reach, Cc∧⟨t,(f ,b)⟩

∧
D would be consistent, which leads to

∧
C1∨C2∨·· ·∨Ci∨⟨t,(f ,b)⟩

∧
D

also being consistent, for some Ci. By the definition of Cc, this means that D ∈C but that is not the case
(because D∈Cc contradicts D not being reached from A and consequently Cc’s definition, as D∈Cc leads
to D being reachable from A). Following a similar reasoning,

∧
A∧⟨t,(f ,b)⟩Cc is also inconsistent and

therefore its negation,
∧
¬(A∧⟨t,(f ,b)⟩Cc) is consistent, which can be rewritten as

∧
A→ [t,(f ,b)]Cc.

Because Cc∧⟨t,(f ,b)⟩¬Cc is inconsistent, its negation ¬(Cc∧⟨t,(f ,b)⟩¬Cc) is valid, which can be
rewritten to ⊢ Cc → [t,(f ,b)]Cc (I). Therefore, by applying generalization we have ⊢ [t,(f ,b)⋆](Cc →
[t,(f ,b)]Cc). By axiom (It), we derive ⊢ [t,(f ,b)]Cc → [t,(f ,b)⋆]Cc (II). By rewriting (II) in (I) we
derive Cc → [t,(f ,b)⋆]Cc. As

∧
A→ [t,(f ,b)]Cc is valid, from (II)

∧
A→ [t,(f ,b)⋆]Cc also is valid.

From the hypothesis ASπ⋆B and Cc’s definition,
∧

A∧⟨t,(f ,b)⋆⟩B and
∧

B∧Cc are consistent (the latter
from Cc’s definition). Then, there is a Ci ∈Cc such that

∧
B∧

∧
C is consistent. But because each Ci is a

maximal consistent set, it is the case that B =Ci, which by the definition of Cc leads to AS⋆
Π

B.

Definition 17 (Proper Canonical Model). The proper canonical model over a set of formulae Γ is defined
as a tuple ⟨At(Γ),Π,RΓ

Π
,δ Γ

Π
,λc,V Γ

Π
⟩ as follows:

• At(Γ) as the set of atoms of Γ;
• Π as the ReLo program;
• The relation R of a ReLo program Π is inductively defined as:

– Rπ = Sπ for each canonical program π;
– RΓ

Π⋆ = (RΓ
Π
)⋆;

– Π = π1⊙π2⊙·· ·⊙πn a ReLo program, RΠ ⊆ S×S as follows:

E. Grilo & B. Lopes 51

* Rπi = {uRπiv | fReLo(t,πi) ≺ δ (v)}, t ≺ δ (u) and πi is any combination of any atomic
programs which is a subprogram of Π.

• δ Γ
Π

as the canonical markup function;
• λc : At(Γ)×N →R;
• V Γ

c (A, p) = {A ∈ At(Γ) | p ∈ A} as the canonical valuation introduced by Definition 16.

Lemma 10. Every canonical model for Π has a corresponding proper canonical model: for all programs
Π, SΓ

Π
⊆ RΓ

Π

Proof. The proof proceeds by induction on Π’s length

• For basic programs π , it follows from Definition 17:
• Π⋆: From Definition 8, Rπ⋆ = R⋆

π . By the induction hypothesis, SΓ
Π
⊆ RΓ

Π
, Also from the definition

of RTC, we have that if (SΓ
Π
)⊆ (RΓ

Π
), then (SΓ

Π
)⋆ ⊆ (RΓ

π)
⋆ (i). From Lemma 9, SΓ

Π⋆ ⊆ (SΓ
Π
)⋆, which

leads to (SΓ
Π
)⋆ ⊆ (RΓ

Π
)⋆ by (i). Finally, (RΓ

Π
)⋆ = (RΓ

Π⋆). Hence, (SΓ
Π⋆)⊆ (RΓ

Π⋆)

Lemma 11 (Existence Lemma for Proper Canonical Models). Let A ∈ At(Γ) and ⟨t,(f ,b)⟩ϕ ∈ FL(Γ).
Then, ⟨t,(f ,b)⟩ϕ ∈ A↔ exists B ∈ At(Γ),ARΓ

Π
B, t ≺ δ Γ

c (A) and ϕ ∈ B.

Proof. ⇒ Let ⟨t,(f ,b)⟩ϕ ∈ A. From Lemma 7 (Existence Lemma for canonical models), There is an
atom B ∈ At(Γ) where ASΓ

Π
B, t ≺ δ Γ

c (A) and ϕ ∈ B. From Lemma 10, SΓ
Π
⊆ RΓ

Π
. Therefore, there is an

atom B ∈ At(Γ) where ARΓ
Π

B, t ≺ δ Γ
c (A) and ϕ ∈ B.

⇐ Let B an atom, B∈At(Γ),ARΠB, t ≺ δ Γ
c (A) and ϕ ∈B. The proof follows by induction on the program

Π = (f ,b) as follows:

• a canonical program πi: this case is straightforward as from Definition 17, Sπi = Rπi , and conse-
quently ASπiB, t ≺ δ Γ

c (A) and (i) ϕ ∈ B. From Lemma 7 and (i), ⟨t,(f ,b)⟩ϕ ∈ A.
• Π⋆: from Definition 17, RΠ⋆ = R⋆

Π
. Then, let B ∈ At(Γ),ARΠ⋆B, t ≺ δ Γ

c (A) and ϕ ∈ B. This means
that there is a finite nondeterministic number n where ARΠ⋆B = ARΠA1RΠA2 . . .RΠAn, where An =
B. The proof proceeds by induction on n:

– n = 1: ARΠB and ϕ ∈ B. Therefore, from Lemma 7,⟨t,(f ,b)⟩ϕ ∈ A. From axiom Rec, one
may derive ⊩ ⟨t,(f ,b)⟩ϕ → ⟨t,(f ,b)⋆⟩ϕ . By the definition of FL and A’s maximality (as it
is an atom of Γ) ⟨t,(f ,b)⋆⟩ϕ ∈ A.

– n > 1: From the previous proof step and the induction hypothesis, ⟨t,(f ,b)⋆⟩ ∈ A2 and
⟨t,(f ,b)⟩⟨t,(f ,b)⋆⟩ ∈ A1. From axiom Rec, one can derive
⊩ ⟨t,(f ,b)⟩⟨t,(f ,b)⋆⟩ϕ→ ⟨t,(f ,b)⋆⟩ϕ . By the definition of FL, and A’s maximality (as it is
an atom of Γ), ⟨t,(f ,b)⋆⟩ϕ ∈ A.

Lemma 12 (Truth Lemma for Proper Canonical Models). Let M Γ
c = ⟨At(Γ),Π,RΓ

Π
,δ Γ

Π
,λc,V Γ

Π
⟩ a proper

canonical model constructed over a formula γ . For all atoms A and all ϕ ∈ FL(γ). M ,A ⊩ ϕ↔ ϕ ∈ A.

Proof. The proof proceeds by induction over ϕ .

• induction basis: ϕ is a proposition p. Therefore, M Γ
c ,A ⊩ p holds from Definition 17 as V Γ

c (p) =
{A ∈ At(Γ) | p ∈ A}.

• induction hypothesis: suppose ϕ is a non atomic formula ψ . Then, M ,A ⊩ ϕ ⇐⇒ ϕ ∈ A, ψ a
strict subformula of ϕ .

E. Grilo & B. Lopes 52

• Inductive step: Let us prove it holds for the following cases (we show only for modal cases):

– Case ϕ = ⟨t,(f ,b)⟩φ . Then, M Γ
c ,A ⊩ ⟨t,(f ,b)⟩φ ⇐⇒ ⟨t,(f ,b)⟩φ ∈ A:

→ Let M Γ
c ,A ⊩ ⟨t,(f ,b)⟩φ . From Definition 14, there is an atom B where ASΓ

Π
B and φ ∈ B.

By Lemma 11, ⟨t,(f ,b)⟩φ ∈ A. Therefore, it holds.
←
Let M Γ

c ,A ⊮ ⟨t,(f ,b)⟩φ . From Definition 16’s valuation function V Γ
c and Lemma 5, we have

M Γ
c ,A ⊩ ¬⟨t,(f ,b)⟩φ . Therefore, for every B where ASΓ

Π
B,M Γ

c ⊩ ¬φ . From the induction
hypothesis, φ /∈ B. Hence, from Lemma 11 ⟨t,(f ,b)⟩φ /∈ A.

– Case ϕ = ⟨t,(f ,b)⋆⟩φ . Then, M Γ
c ,A ⊩ ⟨t,(f ,b)⋆⟩φ ⇐⇒ ⟨t,(f ,b)⋆⟩φ ∈ A:

→ Let M Γ
c ,A ⊩ ⟨t,(f ,b)⋆⟩φ . From Definition 14, there is a state B where ASΓ

Π⋆B and φ ∈ B.
By Lemma 7, ⟨t,(f ,b)⋆⟩φ ∈ A. Therefore, it holds.
← Let M Γ

c ,A ⊮ ⟨t,(f ,b)⋆⟩φ . From Definition 16’s valuation function V Γ
c and Lemma 5, we

have M Γ
c ,A ⊩ ¬⟨t,(f ,b)⋆⟩φ . Therefore, for every B where ASΓ

Π⋆B,M Γ
c ,B ⊩ ¬φ . From the

induction hypothesis, φ /∈ B. Hence, From Lemma 7, ⟨t,(f ,b)⋆⟩φ /∈ A.

Theorem 1 (Completeness of ReLo). Proof. For every consistent formula A, a canonical model M can
be constructed. From Lemma 5, there is an atom A′ ∈At(A) with A∈A′, and from Lemma 12, M ,A′ ⊩A.
Therefore, ReLo’s modal system is complete with respect to the class of proper canonical models as
Definition 17 proposes.

5 Conclusions and Further Work

Reo is a widely used tool to model new systems out of the coordination of already existing pieces of
software. It has been used in a variety of domains, drawing the attention of researchers from different
locations around the world. This has resulted in Reo having many formal semantics proposed, each one
employing different formalisms: operational, co-algebraic, and coloring semantics are some of the types
of semantics proposed for Reo.

This work extends ReLo, a dynamic logic to reason about Reo models. We have discussed its core
definitions, syntax, semantic notion, providing soundness and completeness proofs for it. ReLo naturally
subsumes the notion of Reo programs and models in its syntax and semantics, and implementing its core
concepts in Coq enables the usage of Coq’s proof apparatus to reason over Reo models with ReLo.

Future work may consider the integration of the current implementation of ReLo with ReoXplore4,
a platform conceived to reason about Reo models, and extensions to other Reo semantics. Investigations
and the development of calculi for ReLo are also considered for future work.

References
[1] JR Abrial (1991): B-Tool Reference Manual. B-Core (UK) Ltd.
[2] Farhad Arbab (2004): Reo: a channel-based coordination model for component composition. Mathematical

Structures in Computer Science 14(3), p. 329–366.
[3] Farhad Arbab (2006): Coordination for Component Composition. Electronic Notes in Theoretical Computer

Science 160, pp. 15 – 40. Proceedings of the International Workshop on Formal Aspects of Component
Software (FACS 2005).

4https://github.com/frame-lab/ReoXplore2

https://github.com/frame-lab/ReoXplore2

E. Grilo & B. Lopes 53

[4] Farhad Arbab, Natallia Kokash & Sun Meng (2008): Towards using reo for compliance-aware business
process modeling. In: International Symposium On Leveraging Applications of Formal Methods, Verification
and Validation, Springer, pp. 108–123.

[5] Farhad Arbab & Jan JMM Rutten (2002): A coinductive calculus of component connectors. In: International
Workshop on Algebraic Development Techniques, Springer, pp. 34–55.

[6] Colin Atkinson & Thomas Kuhne (2003): Model-driven development: a metamodeling foundation. IEEE
software 20(5), pp. 36–41.

[7] Christel Baier (2005): Probabilistic Models for Reo Connector Circuits. J. UCS 11(10), pp. 1718–1748.
[8] Christel Baier, Marjan Sirjani, Farhad Arbab & Jan Rutten (2006): Modeling component connectors in Reo

by constraint automata. Science of computer programming 61(2), pp. 75–113.
[9] Mario Benevides, Bruno Lopes & Edward Hermann Haeusler (2018): Towards reasoning about Petri nets:

A Propositional Dynamic Logic based approach. Theoretical Computer Science 744, pp. 22–36.
[10] Patrick Blackburn, M De Rijke & Y Venema (2001): Cambridge tracts in theoretical computer science.
[11] Roberto Bruni & Ugo Montanari (2000): Zero-safe nets: Comparing the collective and individual token

approaches. Information and computation 156(1-2), pp. 46–89.
[12] Dave Clarke (2007): Coordination: Reo, nets, and logic. In: International Symposium on Formal Methods

for Components and Objects, Springer, pp. 226–256.
[13] Erick Grilo & Bruno Lopes (2020): ReLo: a dynamic logic to reason about Reo circuits1. In: Pre-Proceedings

of the 15th International Workshop on Logical and Semantic Frameworks, with Applications (LSFA), p. 32.
[14] Erick Grilo, Daniel Toledo & Bruno Lopes (2022): A logical framework to reason about Reo circuits. Journal

of Applied Logics 9, pp. 199–254.
[15] David Harel, Dexter Kozen & Jerzy Tiuryn (2001): Dynamic logic. In: Handbook of philosophical logic,

Springer, pp. 99–217.
[16] Daniel Jackson (2002): Alloy: a lightweight object modelling notation. ACM Transactions on Software

Engineering and Methodology (TOSEM) 11(2), pp. 256–290.
[17] Sung-Shik TQ Jongmans & Farhad Arbab (2012): Overview of Thirty Semantic Formalisms for Reo. Scien-

tific Annals of Computer Science 22(1).
[18] Joachim Klein, Sascha Klüppelholz, Andries Stam & Christel Baier (2011): Hierarchical modeling and

formal verification. An industrial case study using Reo and Vereofy. In: International Workshop on Formal
Methods for Industrial Critical Systems, Springer, pp. 228–243.

[19] John C Knight (2002): Safety critical systems: challenges and directions. In: Proceedings of the 24th
International Conference on Software Engineering, ACM, pp. 547–550.

[20] Natallia Kokash & Farhad Arbab (2011): Formal design and verification of long-running transactions with
extensible coordination tools. IEEE Transactions on Services Computing 6(2), pp. 186–200.

[21] Natallia Kokash, Behnaz Changizi & Farhad Arbab (2010): A semantic model for service composition with
coordination time delays. In: International Conference on Formal Engineering Methods, Springer, pp. 106–
121.

[22] Natallia Kokash, Christian Krause & Erik De Vink (2012): Reo+ mCRL2: A framework for model-checking
dataflow in service compositions. Formal Aspects of Computing 24(2), pp. 187–216.

[23] Natallia Kokash, Christian Krause & Erik P de Vink (2010): Data-aware design and verification of service
compositions with Reo and mCRL2. In: Proceedings of the 2010 ACM Symposium on Applied Computing,
pp. 2406–2413.

[24] Saul A Kripke (1959): A completeness theorem in modal logic. The journal of symbolic logic 24(1), pp.
1–14.

[25] Yi Li & Meng Sun (2015): Modeling and verification of component connectors in Coq. Science of Computer
Programming 113, pp. 285–301.

E. Grilo & B. Lopes 54

[26] Yi Li, Xiyue Zhang, Yuanyi Ji & Meng Sun (2017): Capturing Stochastic and Real-Time Behavior in Reo
Connectors. In: Formal Methods: Foundations and Applications - 20th Brazilian Symposium, SBMF 2017,
Recife, Brazil, November 29 - December 1, 2017, Proceedings, pp. 287–304, doi:10.1007/978-3-319-70848-
5 18.

[27] Yi Li, Xiyue Zhang, Yuanyi Ji & Meng Sun (2019): A Formal Framework Capturing Real-Time and Stochas-
tic Behavior in Connectors. Science of Computer Programming.

[28] Mohammad Reza Mousavi, Marjan Sirjani & Farhad Arbab (2006): Formal semantics and analysis of com-
ponent connectors in Reo. Electronic Notes in Theoretical Computer Science 154(1), pp. 83–99.

[29] M. Saqib Nawaz & Meng Sun (2018): Reo2PVS: Formal Specification and Verification of Component Con-
nectors. In: The 30th International Conference on Software Engineering and Knowledge Engineering, Hotel
Pullman, Redwood City, California, USA, July 1-3, 2018., pp. 391–390, doi:10.18293/SEKE2018-024.

[30] Jonathan S Ostro (1992): Formal methods for the specification and design of real-time safety critical systems.
Journal of Systems and Software 18(1), pp. 33–60.

[31] Mike P Papazoglou (2003): Service-oriented computing: Concepts, characteristics and directions. In: Web
Information Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth International Conference
on, IEEE, pp. 3–12.

[32] Bahman Pourvatan, Marjan Sirjani, Hossein Hojjat & Farhad Arbab (2009): Automated analysis of Reo
circuits using symbolic execution. Electronic Notes in Theoretical Computer Science 255, pp. 137–158.

[33] Meng Sun & Yi Li (2014): Formal modeling and verification of complex interactions in e-government ap-
plications. In: Proceedings of the 8th International Conference on Theory and Practice of Electronic Gover-
nance, ACM, pp. 506–507.

[34] Samira Tasharofi & Marjan Sirjani (2009): Formal modeling and conformance validation for WS-CDL using
Reo and CASM. Electronic Notes in Theoretical Computer Science 229(2), pp. 155–174.

[35] Xiyue Zhang, Weijiang Hong, Yi Li & Meng Sun (2016): Reasoning about connectors in Coq. In: Interna-
tional Workshop on Formal Aspects of Component Software, Springer, pp. 172–190.

[36] Xiyue Zhang, Weijiang Hong, Yi Li & Meng Sun (2019): Reasoning about connectors using Coq and Z3.
Science of Computer Programming 170, pp. 27–44.

https://doi.org/10.1007/978-3-319-70848-5_18
https://doi.org/10.1007/978-3-319-70848-5_18
https://doi.org/10.18293/SEKE2018-024

© L. Guo & D. Vale
This work is licensed under the
Creative Commons Attribution License.

Analyzing Innermost Runtime Complexity
Through Tuple Interpretations

Liye Guo*

Institute for Computing and Information Sciences
Radboud University, The Netherlands

l.guo@cs.ru.nl

Deivid Vale*

Institute for Computing and Information Sciences
Radboud University, The Netherlands

deividvale@cs.ru.nl

Tuple interpretations are a class of algebraic interpretations that subsume both polynomial and matrix
interpretations as they do not impose simple termination and allow non-linearity. They were developed
in the context of higher-order rewriting to study derivational complexity of algebraic functional
systems. In this paper, we study innermost runtime complexity of first-order applicative rewriting
systems by tailoring tuple interpretations to deal with innermost runtime complexity. This simplifies
the search for cost interpretations since the strong monotonicity requirement, which is present in full
rewriting, is dropped. We prove an innermost version of the compatibility theorem, i.e., if all rules of
the system can be oriented, then the complexity relation is contained in the strict (cost) component of
the cost–size algebra. We then go on to demonstrate the expressivity of cost–size tuples and how they
can be used to bound the runtime complexity of applicative systems.

1 Introduction

In the step-by-step computational model induced by rewriting, time complexity is naturally understood
as the number of rewriting steps needed to reach normal forms. It is usually the case that the cost of
firing a redex, i.e., performing a computational step, is assumed constant. So the intricacies of a low level
rewriting realization (for instance in Turing Machines) are ignored. This assumption does not pose a
problem as long as the low level time complexity needed to apply a rule is kept low. Additionally, this
abstract approach has the advantages of being independent of the specific hardware platform evaluating
the rewriting system at hand.

In this rewriting setting, a complexity function bounds the length of rewrite sequences and is
parametrized by the size of the starting term of the derivation. Two distinct complexity notions are
commonly considered in the literature: derivational and runtime complexity, and they differ by the
restrictions imposed on the initial term of derivations. On the one hand, derivational complexity imposes
no restriction on the set of initial terms. Intuitively, it captures the worst-case behavior of reducing a term
to normal form. On the other hand, runtime complexity requires basic initial terms which, conceptually,
are terms where a single function call is performed on data (e.g., integers, lists, and trees) as arguments.

If programs are expressed by rewriting, their execution time is closely related to the runtime complexity
of the associated rewrite system. Similarly related are programs using call-by-value evaluation strategy
and innermost rewrite systems. Therefore, by combining these two concepts, we obtain a connection
between cost analysis of call-by-value programs and the runtime complexity analysis of innermost term
rewriting. More importantly, due to the abstract nature of rewriting, it is feasible to forgo any specific

*The authors are supported by the NWO VIDI project “CHORPE”, NWO VI.Vidi.193.075 and the NWO TOP project
“ICHOR”, NWO 612.001.803/7571.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1350-3478

L. Guo & D. Vale 56

programming language detail and still derive useful term rewriting results that may carry over to programs.
For an overview of the applicability of rewriting to program complexity the reader is referred to [1, 19].

Therefore, a rewriting approach to program complexity allows us to fully concentrate on finding
techniques to establish bounds to the derivational or runtime complexity functions. A natural way to
determine these bounds is adapting the proof techniques used to show termination to deduce the complexity
naturally induced by the method. There is a myriad of works following this program. To mention a few,
see [2,4,6,13,14,20] for interpretation methods, [5,12,23] for lexicographic and path orders, and [11,21]
for dependency pairs. In this paper, we follow the same idea and concentrate on investigating the innermost
runtime complexity for applicative systems. The termination method for which we base our complexity
analysis framework upon is tuple interpretations [16].

Tuple interpretations are an instance of the interpretation method. Thus, we seek to interpret terms
in such a way that the rewrite relation can be embedded in a well-founded ordering. The defining
characteristic of tuple interpretations is to allow for a split of the complexity measure into abstract notions
of cost and size. When distilled into its essence, the ingredient we need to express the concepts of cost and
size is: a product C×S of a well-founded set C — the cost set — and a quasi-ordered set S — the size set.
Intuitively, the cost tuples in C bound the number of rewriting steps needed to reach normal forms, which
is in line with the aforementioned rewriting cost model. Meanwhile, the size tuples in S are more general.
We can use integers, reals, and terms themselves as size. Following the treatment in [16], the construction
of cost–size products is done inductively on the structure of types. So we map each type σ to a cost–size
product Cσ ×Sσ . Hence, in this paper our first-order term formalism follows a type discipline.

While forging new tools for our complexity framework, we would like to not only exhibit bounds to
the runtime complexity function but also determine sufficient conditions for its feasibility, that is, the
existence of polynomial upper bounds. In the eighties Huet and Oppen [15] conjectured that polynomial
interpretations are sufficient to evince feasibility, which was disproved by Lautemann [17] in the same
decade. In fact, polynomial interpretations induce a double exponential upper bound on the derivation
length, as shown by the seminal work of Hofbauer and Lautemann [14]. Feasibility can be recovered by
imposing additional conditions on interpretations. To the best of our knowledge, Cichon and Lescanne [6]
were the first to propose such conditions even though their setting is restricted to number theoretic
functions only. Similar results are proved in [4], where the authors provide rewriting characterizations of
complexity classes using bounds to the interpretation of data constructors. These same conditions appear
in the higher-order setting, see [2,16]. In the present paper, we follow a similar approach to that in [4] and
show that we can recover those classical results by bounding size-tuples in interpretations.

Tuple interpretations do not provide a complete termination proof method: there are terminating
systems for which interpretations cannot be found. Consequently, it does not induce a complete complexity
analysis framework either. Notwithstanding, it has the potential to be very powerful if we choose the
cost–size sets wisely. A second limitation is that the search for interpretations is undecidable in general,
which is expected already in the polynomial case [18]. Undecidability never hindered computer scientists’
efforts on mechanizing difficult problems, however. Indeed, several proof search methods were developed
over the years to find interpretations automatically [3, 7, 8, 13, 24].

Contribution. In Definition 1 we provide a formal definition of cost–size products and interpret types,
Definition 3, as cost–size products, which defines the interpretation domain for cost–size algebras defined
in Definition 6. In Lemmas 2 and 4 we show the soundness of this approach. In Definition 5 we
introduce a type-safe application operator on cost–size products and prove its strong monotonicity, an
important ingredient to show the Compatibility Theorem 1. We establish termination of Toyama’s system

L. Guo & D. Vale 57

in Example 3, showing that Theorem 1 correctly captures innermost termination in our setting. We
provide sufficient conditions so that feasible bounds on innermost runtime complexity can be achieved in
Lemmas 7 and 8.

Outline. In Section 2, we fix notation and recall basic notions of rewriting syntax, basic terminology
on complexity of rewriting, and review our notation for sets, orders, and functions. In Section 3, we
tailor tuple interpretations to the innermost setting and prove the innermost version of the compatibility
theorem. We proceed to establish complexity bounds to innermost runtime complexity in Section 4. In
Section 5, we present preliminary work on automation techniques to find cost–size tuple interpretations.
We conclude the paper in Section 6.

2 Preliminaries

TRSs and Innermost Rewriting. We consider simply typed first-order term rewriting systems in curried
notation. Fix a set B, whose elements are called sorts. The set TB of types is generated by the grammar
TB ::= B | B ⇒ TB. Each type is written as ι1 ⇒ ··· ⇒ ιm ⇒ κ where all ιi and κ are sorts. A signature
is a set F of symbols together with an arity function ar which associates to each f ∈ F a type σ ∈ TB.
We call the triple (B,F ,ar) a syntax signature. For each sort ι , we postulate a set Xι of countably many
variables and assume that Xι ∩Xι ′ = /0 if ι ̸= ι ′. Let X denote

⋃
ι Xι and assume that F ∩X = /0.

The set T of pre-terms is generated by the grammar T ::= F | X | (T T). The set T (F ,X) of terms
consists of pre-terms which can be typed as follows: (i) f :σ if ar(f) = σ , (ii) x : ι if x ∈Xι , and (iii) (s t) :τ

if s : ι ⇒ τ and t : ι . Application of terms is left-associative, so we write s t u for ((s t) u). Let vars(s)
be the set of variables occurring in s. A ground term is a term s such that vars(s) = /0. A symbol f ∈ F
is called the head symbol of s if s = f s1 . . .sk. A subterm of s is a term t (we write s� t) such that
(i) s = t, or (ii) t is a subterm of s′ or s′′ when s = s′ s′′. A proper subterm of s is a subterm of s which
is not equal to s. A substitution γ is a type-preserving map from variables to terms such that the set
dom(γ) = {x ∈X | γ(x) ̸= x} is finite. Every substitution γ extends to a type-preserving map from terms to
terms, whose image on s is written as sγ , as follows: (i) fγ = f, (ii) xγ = γ(x), and (iii) (s t)γ = (sγ) (tγ).

A relation → on terms is monotonic if s → s′ implies t s → t s′ and s u → s′ u for all terms t and u of
appropriate types. A rewrite rule ℓ→ r is a pair of terms of the same type such that ℓ = f ℓ1 . . . ℓk and
vars(ℓ)⊇ vars(r). A term rewriting system (TRS) R is a set of rewrite rules. The rewrite relation →R
induced by R is the smallest monotonic relation on terms such that ℓγ →R rγ for all rules ℓ→ r ∈R and
substitutions γ . A reducible expression (redex) is a term of form ℓγ for some rule ℓ→ r and substitution γ .
A term is in normal form if none of its subterms is a redex. A TRS R is terminating if no infinite rewrite
sequence s →R s′ →R s′′ →R · · · exists.

Every rewrite rule ℓ→ r defines a symbol f, namely, the head symbol of ℓ. For each f ∈ F , let Rf

denote the set of rewrite rules that define f in R. A symbol f ∈ F is a defined symbol if Rf ̸= /0; otherwise,
f is called a constructor. Let D be the set of defined symbols and C the set of constructors. So F =D∪C.
A data term is a term of form c d1 . . . dk where c is a constructor and each di is a data term. A basic term
is a term of type ι and of form f d1 . . . dm where ι is a sort, f is a defined symbol and all d1, . . . ,dm are
data terms. We let Tb(F) denote the set of all basic terms.

Example 1 We fix nat and list for the sorts of natural numbers and lists of natural numbers, respectively.
In the below TRS, 0 : nat, s : nat ⇒ nat, nil : list and cons : nat ⇒ list ⇒ list are constructors while
add,minus,quot :nat⇒ nat⇒ nat, append : list⇒ list⇒ list, sum : list⇒ nat and rev : list⇒ list are

L. Guo & D. Vale 58

defined symbols.

add x 0→ x sum nil→ 0

add x (s y)→ s (add x y) sum (cons x q)→ add (sum q) x

append nil l → l rev nil→ nil

append (cons x q) l → cons x (append q l) rev (cons x q)→ append (rev q) (cons x nil)

minus x 0→ x quot 0 (s y)→ 0

minus 0 y → 0 quot (s x) (s y)→ s (quot (minus x y) (s y))

minus (s x) (s y)→minus x y

We restrict our attention to innermost rewriting: only redexes with no reducible proper subterms may
be reduced. More precisely, the innermost rewrite relation →i

R induced by R is defined as follows:

(i) ℓγ →i
R rγ if ℓ→ r ∈R and all proper subterms of ℓγ are in normal form,

(ii) s t →i
R s′ t if s →i

R s′, and

(iii) s t →i
R s t ′ if t →i

R t ′.

Below we only analyze innermost rewriting. So we write → for →i
R whenever no ambiguity arises.

Derivation Height and Complexity. Given a relation → on terms, we write s n−→ t if there is a sequence
s = s0 → ··· → sn = t of length n. The derivation height dh(s,→) of a term s with respect to → is the
length of the longest →-sequence of starting with s, i.e., dh(s,→) = max{n | ∃t ∈ T (F ,X) : s n−→ t}. The
absolute size of a term s, denoted by |s|, is 1 if s is a symbol in F or a variable, and |s1|+ |s2| if s = s1 s2.
In order to express various complexity notions in the rewriting setting, we define the complexity function
as follows: comp(n,→,T) = max{dh(s,→) | s ∈ T and |s| ≤ n}. Intuitively, comp(n,→,T) is the length
of the longest →-sequence starting with a term whose absolute size is at most n from T . We summarize
four particular instances in the following table:

derivational runtime

full dcR(n) = comp(n,→R,T (F ,X)) rcR(n) = comp(n,→R,Tb(F))

innermost idcR(n) = comp(n,→i
R,T (F ,X)) ircR(n) = comp(n,→i

R,Tb(F))

Ordered Sets and Monotonic Functions. A quasi-ordered set (A,⊒) consists of a nonempty set A and
a quasi-order (reflexive and transitive) ⊒ on A. An extended well-founded set (A,>,≥) is a nonempty set
A together with a well-founded order > and a quasi-order ≥ on A such that ≥ is compatible with >, i.e.,
x > y implies x ≥ y and x > y ≥ z implies x > z. Below we refer to an extended well-founded set simply
as a well-founded set.

Given quasi-ordered sets (A,⊒) and (B,⊒), a function f : A −→ B is said to be weakly monotonic if
x ⊒ y implies f (x)⊒ f (y). Let A =⇒ B denote the set of weakly monotonic functions from A to B. The
comparison operator ⊒ on B induces pointwise comparison on A =⇒ B as follows: f ⊒ g if f (x)⊒ g(x)
for all x ∈ A. This way (A =⇒ B,⊒) is also a quasi-ordered set. Given well-founded sets (A,>,≥) and
(B,>,≥), a function f : A −→ B is said to be strongly monotonic if x > y implies f (x)> f (y) and x ≥ y
implies f (x)≥ f (y).

L. Guo & D. Vale 59

3 Tuple Interpretations

In this section, we introduce the notion of tuple algebras in the context of innermost rewriting. We start by
interpreting types as cost–size products, give interpretation of terms as cost–size tuples, and finally prove
the innermost version of the compatibility theorem.

3.1 Types as Cost–Size Products

We start with defining cost–size products.

Definition 1 (Cost–Size Products) Given a well-founded set (C,>,≥), called the cost set, and a quasi-
ordered set (S,⊒), called the size set, we call C×S the cost–size product of (C,>,≥) and (S,⊒), and its
elements cost–size tuples.

Cost–size tuples can be ordered as follows:

Definition 2 (Product Order) For all ⟨x,y⟩ and ⟨x′,y′⟩ in C×S,

(i) ⟨x,y⟩ ≻ ⟨x′,y′⟩ if x > x′ and y ⊒ y′, and

(ii) ⟨x,y⟩≽ ⟨x′,y′⟩ if x ≥ x′ and y ⊒ y′.

And we get a well-founded set.

Lemma 1 (C×S,≻,≽) is a well-founded set.

PROOF It follows immediately from the definition that ≻ and ≽ are transitive, and ≽ is reflexive. To
prove that ≻ is well-founded, note that the existence of ⟨x1,y1⟩ ≻ ⟨x2,y2⟩ ≻ · · · would imply x1 > x2 > · · ·,
which cannot be the case since > is well-founded.

We still need to check that ≽ is compatible with ≻.

• Suppose ⟨x,y⟩ ≻ ⟨x′,y′⟩. Since x > x′ implies x ≥ x′, we have ⟨x,y⟩≽ ⟨x′,y′⟩.
• Suppose ⟨x,y⟩ ≻ ⟨x′,y′⟩≽ ⟨x′′,y′′⟩. Since x > x′ ≥ x′′ implies x > x′′ and ⊒ is transitive, we have
⟨x,y⟩ ≻ ⟨x′′,y′′⟩. ■

Now we interpret types as a particular kind of cost–size products.

Definition 3 (Interpretation of Types) Let B denote the set of sorts. An interpretation key JB for B
maps each sort ι to a quasi-ordered set (JB(ι),⊒) with a minimum. For each type σ ∈ TB, we define the
cost–size interpretation of σ as the product LσM = Cσ ×Sσ with

Cσ = N×Fc
σ

Fc
ι = unit Sι = JB(ι)

Fc
ι⇒τ = Sι =⇒Cτ Sι⇒τ = Sι =⇒Sτ

where unit = {U} is quasi-ordered by ≥ with U ≥ U. All Fc
ι⇒τ and Sι⇒τ are ordered by pointwise

comparison. The set Cσ is ordered as follows: (n, f)> (m,g) if n > m and f ≥ g, and (n, f)≥ (m,g) if
n ≥ m and f ≥ g. This definition requires that all (Cσ ,≥) and (Sσ ,⊒) are quasi-ordered sets, which is
guaranteed by the following lemma.

Lemma 2 For any type σ , (Cσ ,>,≥) is a well-founded set and (Sσ ,⊒) is a quasi-ordered set with a
minimum. Therefore, LσM is a cost–size product.

L. Guo & D. Vale 60

PROOF When σ is a sort, Cσ = N×unit∼= N and Sσ = JB(σ), so the statement is trivially true. When
σ = ι ⇒ τ , we have Cσ = N×Fc

ι⇒τ , Fc
ι⇒τ = JB(ι) =⇒ Cτ and Sσ = JB(ι) =⇒ Sτ . By induction,

(Cτ ,≥) and (Sτ ,⊒) are quasi-ordered sets. So are (Fc
ι⇒τ ,≥) and (Sσ ,⊒), which are ordered by pointwise

comparison. By Lemma 1, (Cσ ,>,≥) is a well-founded set. One minimum of (Sσ ,⊒) is the constant
function λλλx.⊥ where ⊥ is a minimum of (Sτ ,⊒). ■

The cost component Cσ of LσM holds information about the cost of reducing a term of type σ to
its normal form. It has two parts: one is numeric and the other is functional. The functional part Fc

σ

degenerates to unit when σ is just a sort, and is indeed a function space when σ = ι ⇒ τ is a function
type. In the latter case, Fc

σ = Sι =⇒Cτ consists of functions with domain Sι , the size component of LιM.
This is very much in line with the standard complexity notion based on Turing machines, where time
complexity is parametrized by the size of input.

In order to use Definition 3 to interpret types, we need a concrete interpretation key, which chooses a
size set for each sort. In our examples, a particular kind of interpretation keys map each sort ι to (NK[ι],⊒)
where K[ι]≥ 1 and

〈
x1, . . . ,xK[ι]

〉
⊒

〈
y1, . . . ,yK[ι]

〉
if xi ≥ yi for all i. Such interpretation keys are used

unless otherwise stated. We take a semantic approach (cf. [16]) to determine the number K[ι] for each
sort ι . For example, nat is the sort of natural numbers in unary and n ∈ N is represented as s(. . .(s 0))
with n successive applications of s. The number of occurrences of s is a reasonable measure for the size
of a natural number so we let K[nat] be 1. On the other hand, to characterize the size of a list, we need
information about the individual elements in addition to the length of the list. So for each list, we keep
track of its length as well as the maximum size of its elements. This way K[list] = 2. See Example 2.
Definition 4 Cost–size tuples in LσM are written as ⟨(n, f c), f s⟩ where n ∈N, f c ∈Fc

σ and f s ∈Sσ . When
σ is a function type, we refer to f c as the cost function and f s as the size function.

In order to define the interpretation of terms (Definition 7), we need a notion of application for
cost–size tuples. Given fff ∈ Lι ⇒ τM and xxx ∈ LιM, our goal is to define fff · xxx ∈ LτM. Let us demonstrate with
an example. Recall from Example 1 the function append : list⇒ list⇒ list, which takes two lists q and l
as input. Let append be interpreted as fff = ⟨(n, f c), f s⟩ ∈ Llist⇒ list⇒ listM, where

n ∈ N,

f c ∈
size of q︷︸︸︷
Slist =⇒ (N× (

size of l︷︸︸︷
Slist =⇒ (N×unit))), and

f s ∈
size of q︷︸︸︷
Slist =⇒ (

size of l︷︸︸︷
Slist =⇒Slist).

For the first list q, take a cost–size tuple xxx = ⟨(m,U),xs⟩ from LlistM. We apply f c and f s to xs, and get
f c(xs) = (k,h) ∈ N× (Slist =⇒ (N×unit)) and f s(xs) ∈ Slist =⇒Slist, respectively. Then we sum the
numeric parts and collect all the data in the new cost–size tuple ⟨(n+m+ k,h), f s(xs)⟩. This process is
summarized in the following definition.
Definition 5 (Semantic Application) Given fff = ⟨(n, f c), f s⟩ ∈ Lι ⇒ τM and xxx = ⟨(m,U),xs⟩ ∈ LιM, the
semantic application of fff to xxx, denoted by fff · xxx, is ⟨(n+m+ k,h), f s(xs)⟩ where f c(xs) = (k,h).

Semantic application is left-associative, so fff ·ggg ·hhh stands for (fff ·ggg) ·hhh. This definition conforms to the
types, which is stated in the following lemma.
Lemma 3 If fff ∈ Lι ⇒ τM and xxx ∈ LιM, then fff · xxx ∈ LτM.

Remark 1 Because N×unit is order-isomorphic to N, we identify N×unit with N and (m,U) with m
unless otherwise stated. So we write ⟨m,xs⟩ for cost–size tuples in LιM where ι is a sort.

L. Guo & D. Vale 61

3.2 Cost–Size Tuple Algebras

Definition 6 A cost–size tuple algebra (L·M,J) over a syntax signature (B,F ,ar) consists of

(i) a family of cost–size products {LσM}
σ∈TB , and

(ii) an interpretation function J : F −→
⊎

σ LσM which associates to each f : σ an element Jf ∈ LσM.

With innermost rewriting, we assume that variables have no cost.

Definition 7 Fix a cost–size tuple algebra (L·M,J). A valuation α : X −→
⊎

σ LσM is a function which
maps each variable x : ι to a zero-cost tuple ⟨0,xs⟩ ∈ LιM. The interpretation of a term s under valuation α ,
denoted by JsKJα , is defined as follows:

JfKJα = Jf JxKJα = α(x) Js tKJα = JsKJα · JtKJα

As a corollary of Lemma 3, interpretation of terms conforms with types.

Lemma 4 If s : σ then JsKJα is in LσM, for all valuations α .

Let σ be ι1 ⇒ . . .⇒ ιm ⇒ κ where all ιi and κ are sorts. Elements of Cσ can be written as

(e0,λλλx1.

(e1,λλλx2.

. . .

(em−1,λλλxm.

(em,U)) . . .)).

(1)

When e0 = e1 = · · ·= em−1 = 0, we write (λλλx1 . . .xm.em) as a shorthand.

Example 2 Let Snat and Slist be N and N×N, respectively. Recall that the size of a natural number is
the number of occurrences of s, and the size of a list is a pair q = (ql,qm) where ql is the length and qm is
the maximum size of the elements. We interpret the constructors as follows:

J0 = ⟨0,0⟩ Js = ⟨(λλλx.0),λλλx.x+1⟩
Jnil = ⟨0,(0,0)⟩ Jcons = ⟨(λλλxq.0),λλλxq.(ql+1,max(x,qm))⟩

Both 0 and nil have no cost because they are constructors without a function type. With innermost
rewriting, constructors with a function type, such as s and cons, have e0 = · · · = em = 0 for cost of
form (1).

3.3 Compatibility Theorem

Roughly, the compatibility theorem (Theorem 1) states that if R is compatible with a tuple algebra A,
then the rewriting relation →i

R is embedded in the well-founded order on cost–size products. The next
two lemmas are technical results needed in order to prove it. Lemma 5 states that interpretations are
closed under substitution and Lemma 6 provides strong monotonicity to semantic application.

Definition 8 Fix a cost–size tuple algebra (L·M,J). A substitution γ is zero-cost under valuation α if
Jγ(x)KJα is a zero-cost tuple for each variable x. Given a valuation α and a zero-cost substitution γ , the
function αγ = J·KJα ◦ γ = Jγ(·)KJα is thus a valuation.

L. Guo & D. Vale 62

Lemma 5 (Substitution) If γ is a zero-cost substitution under valuation α , JsγKJα = JsKJ
αγ for any term s.

Lemma 6 App(fff ,xxx) = fff · xxx is strongly monotonic on both arguments.

PROOF We need to prove (i) if fff ≻ ggg and xxx ≽ yyy, then App(fff ,xxx) ≻ App(ggg,yyy); (ii) if fff ≽ ggg and xxx ≻ yyy,
then App(fff ,xxx) ≻ App(ggg,yyy); (iii) if fff ≽ ggg and xxx ≽ yyy, then App(fff ,xxx) ≽ App(ggg,yyy). Consider cost–size
tuples fff ,ggg ∈ Lι ⇒ τM and xxx,yyy ∈ LιM. Let fff = ⟨(n, f c), f s⟩, ggg = ⟨(m,gc),gs⟩, xxx = ⟨xc,xs⟩, and yyy = ⟨yc,ys⟩.
We proceed to show (i) and observe that (ii) and (iii) follow similar reasoning. Indeed, if fff ≻ ggg and
xxx ≽ yyy we have that n > m, f c ≥ gc, f s ⊒ gs, xc ≥ yc, and xs ⊒ ys. Hence, by letting f c(xs) = (k,h) and
gc(ys) = (k′,h′), we get:

App(fff ,xxx) = ⟨(n, f c), f s⟩ · ⟨xc,xs⟩= ⟨(n+ xc+ k,h), f s(xs)⟩>
〈
(m+ yc+ k′,h′),gs(ys)

〉
= App(ggg,yyy)

■

Definition 9 A TRS R is said to be compatible with a cost–size tuple algebra (L·M,J) if JℓKJα ≻ JrKJα for
all rules ℓ→ r ∈R and valuations α .

Theorem 1 (Compatibility) Let R be a TRS compatible with a cost–size tuple algebra (L·M,J). Then,
for any pair of terms s and t, whenever s →i

R t we have JsKJα ≻ JtKJα .

PROOF We proceed by induction on →i
R. For the base case, s →i

R t by ℓγ → rγ and all subterms of ℓγ are
in →R normal form. Therefore, since JℓKJα ≻ JrKJα by hypothesis, Lemma 5 gives us that JℓγKJα ≻ JrγKJα .

In the inductive step we use Lemma 6 combined with the (IH) as follows. Suppose s →i
R t by

s = s′u →i
R s′′u with s′ →i

R s′′. Hence, Js′uKJα = Js′KJα ·JuKJα = App(Js′KJα ,JuKJα), henceforth the induction
hypothesis gives Js′KJα ≻ Js′′KJα , which combined with Lemma 6 implies JsKJα = App(Js′KJα ,JuKJα) ≻
App(Js′′KJα ,JuKJα) = JtKJα . When s →i

R t with s = s′ u →i
R s′ u′ the proof is analogous. ■

Example 3 Let 0,1 :ι , g :ι ⇒ ι ⇒ ι , and f :ι ⇒ ι ⇒ ι ⇒ ι . The rewrite system introduced by Toyama [22]
and defined by R= {g x y → x, g x y → y, f 0 1 z → f z z z} was given to show that termination is not
modular for disjoint unions of TRSs. Indeed, it admits the infinite rewriting sequence f 0 1 (g 0 1)→R
f (g 0 1) (g 0 1) (g 0 1) →+

R f 0 1 (g 0 1). However, the innermost relation →i
R is terminating. In

order to prove it, we introduce a non-numeric notion of size. Let JB(ι) = P(T (F ,X)), i.e., the set of all
subsets of T (F ,X). This set is partially ordered by set inclusion, so x ⊒ y iff x ⊇ y, which is a quasi-order.
Consider the following interpretation:

J0 = ⟨0,{0}⟩ J1 = ⟨0,{1}⟩ Jg = ⟨(λλλxy.1),λλλxy.x∪ y⟩ Jf = ⟨(λλλxyz.H(x,y)),λλλxyz. /0⟩ ,

where H is a helper function defined by H(x,y) = if x ⊒ {0}∧ y ⊒ {1} then 1 else 0. Notice that
H is weakly monotonic and all terms in normal form are interpreted as sets of size ≤ 1. Checking
compatibility is straightforward: Jg x yK = ⟨1,x∪ y⟩ ≻ ⟨0,x⟩= JxK and Jg x yK = ⟨1,x∪ y⟩ ≻ ⟨0,y⟩= JyK;
and Jf 0 1 zK = ⟨1, /0⟩ ≻ ⟨0, /0⟩= Jf z z zK, because any instantiation of z is necessarily in normal form, so
it cannot include both 0 and 1.

This example, albeit artificial, is interesting from a termination point of view. It shows that tuple
interpretations can be used to deal with rewrite systems that only terminate via the innermost strategy.

4 Polynomial Bounds for Innermost Runtime Complexity

In this section, we study the applications of tuple interpretations to complexity analysis of compatible
TRSs, i.e., rewriting systems that admit an interpretation in a tuple algebra (L·M,J). Even though cost and
size are split in our setting, they are intertwined concepts (in a sense we make precise in this section) that
constitute what we intuitively call “complexity” of a TRS.

L. Guo & D. Vale 63

4.1 Additive Tuple Interpretations

In order to establish upper bounds to ircR(n), it suffices to bound the cost component JsKc of all terms
s where |s| ≤ n. Furthermore, since basic terms are of the form f d1 . . .dm, the size of data terms plays
an important role in our analysis. In what follows, we use the default choice for interpretation key when
interpreting types; that is, JB(ι) = NK[ι], with K[ι]≥ 1 for each ι ∈ B.

Given σ = ι1 ⇒ . . .⇒ ιm ⇒ κ , the size component of LσM is Sσ =NK[ι1] =⇒ . . .=⇒NK[ιm] =⇒NK[κ].
Size functions f s ∈ Sσ when fully applied can be written in terms of functional components. Hence,
f s(x1, . . . ,xm) =

〈
f s1(x1, . . . ,xm), . . . , f sK[κ](x1, . . . ,xm)

〉
.

Definition 10 Let σ be a type and f s ∈ Sσ . The size function f s is linearly bounded if each one of its
component functions f s1 , . . . , f sK[κ] is upper-bounded by a positive linear polynomial, i.e., there is a positive

constant a ∈ N such that for all 1 ≤ l ≤ m, f sl (x1, . . . ,xm)≤ a(1+∑
m
i=1 ∑

K[ιi]
j=1 xi j). Analogously, we say f s

is additive if there is a constant a ∈ N such that ∑
K[κ]
l=1 f sl (x1, . . . ,xm)≤ a+∑

m
i=1 ∑

K[ιi]
j=1 xi j.

Notice that by this definition linearly bounded (or additive) size functions are not required to be linear
(or additive) but to be upper-bounded by a linear (additive) function. So this permits us to use for instance
min(x,2y), whereas xy cannot be used. Size interpretations do not necessarily bound the absolute size of
data terms. For instance, we may interpret a data constructor c : ι ⇒ κ with J s

c = λλλx.⌊x/2⌋ which would
give us |d| ≥ JdKs. This is specially useful when dealing with sublinear interpretations.

The next lemma ensures that by interpreting constructors additively the size interpretation of data
terms is proportional to their absolute size:

Lemma 7 Let R be a TRS compatible with a cost–size tuple algebra (L·M,J).
(i) Assume J s

c is additive for all data constructors c, then for all data terms d: if |d| ≤ n, then there
exists a constant b > 0 such that JdKsl ≤ bn, for each size-component JdKsl of JdK.

(ii) Assume J s
c is linearly bounded for all data constructors c, then for all data terms d: if |d| ≤ n, then

there exists a constant b > 0 such that JdKsl ≤ 2bn, for each size-component JdKsl of JdK.

The bound in (ii) is sharp. Indeed, define (when interpreting Radd): J0 = ⟨0,1⟩, Js = ⟨(λλλx.0),λλλx.2x+1⟩,
and Jadd = ⟨(λλλxy.y+1),λλλxy.x+ y⟩. In this case, for a data term n= sn(0) its size interpretation is exactly
JnKs = 2n + n ≤ 2|n|. However, whereas this choice is compatible with Radd, and hence proving its
termination, it induces an exponential overhead on ircRadd

, which is linearly bounded (see Example 4).
Such a huge overestimation is not desirable in a complexity analysis setting. This behavior sets a strict
upper-bound to the interpretation of data constructors; namely, we seek to bound constructor’s size
interpretations additively. It is easy to show that size components for nat and list in Example 2 are
additive.

Definition 11 We say an interpretation J is additive if for each c ∈ C, J s
c is additive.

4.2 Cost-Bounded Tuple Interpretations

In what follows, we consider rewriting systems with additive interpretations.

Definition 12 Let σ be a type and fff c ∈ Cσ . We say fff c, written as in form (1), is linearly (additively)
bounded whenever each ei, 0 ≤ i ≤ m, is linearly (additively) bounded. Additionally, Jf is bounded by a
functional f if both J c

f and J s
f are bounded by f .

In the next lemma, we collect the appropriate induced upper-bounds on innermost runtime complexity
given that we can provide bounds to the cost–size components of interpretations.

L. Guo & D. Vale 64

Lemma 8 Suppose R is a TRS compatible with a tuple algebra (L·M,J), then:

(i) if, for all f ∈ F , J s
f is logarithmically and J c

f is additively bounded, then ircR(n) ∈ O (logn);

(ii) if, for all f ∈ F , Jf is additively bounded, then ircR(n) ∈ O (n); and

(iii) if, for all defined symbols f and constructors c, Jc is additively and Jf is polynomially bounded,
then ircR(n) ∈ O

(
nk
)
, for some k ∈ N.

Example 4 Let us illustrate this behavior by interpreting functions from Example 1. Interpretation for
constructors were given in Example 2.

Jadd = ⟨(λλλxy.y+1),λλλxy.x+ y⟩ Jsum = ⟨(λλλq.2ql+qlqm),λλλq.qlqm⟩
Jminus = ⟨(λλλxy.y+1),λλλxy.x⟩ Jrev =

〈
(λλλq.ql+

ql(ql+1)
2 +1),λλλq.q

〉
Jquot = ⟨(λλλxy.x+ xy+1),λλλxy.x⟩
Jappend = ⟨(λλλql.ql+1),λλλql.⟨ql+ ll,max(qm,qm)⟩⟩

Checking compatibility of this interpretation is straightforward. Notice that in each set of rules
defining a function f in Example 1 size components are additively and cost components are polynomially
bounded. By case (b) of Lemma 8, we have that ircRadd

, ircRappend
, and ircRminus

are linear. Quadratic
bounds can be derived to ircRquot , ircRsum

, and ircRrev
.

Recall the semantic meaning given to size components, see Example 2, one can observe that the cost
component of interpretations do not only bound the innermost runtime complexity of Rf but also provide
additional information on the role each size component plays in the reduction cost. For instance: the
cost of adding two numbers depends solely on the size of add’s second argument; the cost of summing
every element of a list has a linear dependency on its length and non-linear dependency on its length and
maximum element. This is particularly useful in program analysis since one can detect a possible costly
operation by analyzing the shape of interpretations themselves.

5 Automation

In this section, we limn an automation technique implementing a procedure to search for cost–size tuple
interpretations.

A Pseudo-procedure to Search for Cost–Size Tuples. As it might be expected, tuple interpretations do
not provide a complete proof method: there are innermost terminating systems that cannot be oriented.
Nevertheless, it has the potential to be very powerful — if we choose the interpretation key JB right.
Intuitively, we begin the search by assigning a measure of size to each sort, that is the number K[ι]. In a
fully automated setting, where no human input is allowed, all sorts ι start with K[ι] = 1 and go up to a
pre-determined bound K.

Main Procedure
Input: A syntax signature (B,F ,ar) for a TRS R together with its set of rules ℓi → ri.
Output: YES (together with a representation of the cost–size tuple found), if a cost–size tuple could be
found; MAYBE, if all steps below where executed and no interpretation could be found1.

1. Split the signature into two disjoint sets of constructors and defined symbols, i.e., F = C ∪D.

1Notice that with only this approach we cannot possibly return NO.

L. Guo & D. Vale 65

2. For each constructor c : ι1 ⇒ . . .⇒ ιm ⇒ κ , choose its cost interpretation as the zero-valued cost
function (λλλx1 . . .xm.0); size interpretations are additive.

3. Split D into sets D1, . . . ,Dk such that for each f ∈ Di, all function symbols occurring in the rules
defining f are either constructors or in D1 ∪·· ·∪Di.

4. For all 1 ≤ i ≤ n, choose an interpretation shape for the symbols in Di based on the selector strategy
S (to be defined below). Remove the associated choice from S parametrized by f.

• If no choice can be made by S stop and return MAYBE.

5. Simplify JℓK ≻ JrK so that the result is a set of order constraints that does not depend on any
interpreted variable (we shall define this simplification step below).

6. Check if C holds.

• If all constraints in C hold, then return YES.
• Otherwise, increase K[ι] by one, update the additive size interpretation for the constructors,

and return to step 4 choosing another interpretation shape.

Strategy-based Search for Tuple Interpretations. Two key aspects of the previous procedure remain to
be defined. The strategy S for selecting interpretation shapes and the check command in step 6. Intuitively,
a strategy is a procedure that implement choices for interpreting defined symbols in Di. For instance, we
could randomly pick an interpretation shape from a list (the blind strategy); we could incrementally select
interpretations from a list of possible attempts (the progressive strategy); or we could select interpretations
based on their syntax patterns (the pattern strategy). The check procedure depends very much on the type
of interpretations and which class of weakly monotonic functions is allowed. We illustrate each strategy
and checker in the case where interpretations are polynomials and max-polynomials.

Definition 13 (Interpretation Shapes) Let σ = ι1 ⇒ . . .⇒ ιm ⇒ κ , and each fi j appearing in the shapes
below is a additively bounded weakly monotonic function over Sσ .

• The additive class of interpretations contains additively bounded cost–size functionals of the
following form:

λλλx1 . . .xm.
m

∑
i=1

K[ιi]

∑
j=1

xi j +b0 +b1 f1(x1, . . . ,xm)+ · · ·+bN fN(x1, . . . ,xm);

• The linear class contains cost–size functionals written as:

λλλx1 . . .xm.
m

∑
i=1

K[ιi]

∑
j=1

ai j fi j(x1, . . . ,xm)xi j;

• The simple class contains cost–size functionals written as:

λλλx1 . . .xm. ∑
i j∈{0,1}

ai1 , . . . ,aim fi1 (⃗x), . . . , fim (⃗x)xi1
1 · · ·xim

m ;

• The simple quadratic class contains cost–size functionals written as a sum of a simple functional
plus a quadratic component:

λλλx1 . . .xm. ∑
i j∈{0,1}

ai1 . . .aim fi1 (⃗x) . . . fim (⃗x)xi1
1 · · ·xim

m + ∑
1≤i≤m

bix2
i ;

L. Guo & D. Vale 66

• and finally, the quadratic class contains cost–size functions where we allow general product of
variables with degree at maximum 2:

λλλx1 . . .xm. ∑
i j∈{0,1,2}

ai1 , . . . ,aim fi1 (⃗x) . . . fim (⃗x)xi1
1 · · ·xim

m .

An interpretation is a max-polynomial if its functional coefficients are composed of compositions of max
functions only.

Hence, the blind strategy randomly selects one of the shapes above. The incremental strategy chooses
interpretations in order, starting from additive up to quadratic. The pattern strategy is slightly more
difficult to realize since we need heuristic analysis on the shape of rules. For instance, every rule of the
form f x1 . . .xm → xi have constant cost functions (λλλx1 . . .xm.1) and additive size components. Rules that
copy variables, i.e., follow the pattern C[x]→ D[x,x], induce at least quadratic bound on cost. Notice that
this is the case for all quadratic complexities in this paper.

In order to simplify constraints JℓK ≻ JrK we have to simplify inequalities between polynomials
(max-polynomials). To simplify polynomial (max-polynomial) shapes, we need to compare polynomials
Pc
ℓ > Rc

r and Ps
ℓ1
⊒ Ps

r1
∧ ·· · ∧Ps

ℓK[τ]
⊒ Ps

rK[κ]
. These conditions are then reduced to formulas in QF NIA

(Quantifier-Free Non-Linear Integer Arithmetic) and sent to an SMT solver, see [9]. Max polynomials are
simplified using the rules max(x,y)+ z ; max(x+ z,y+ z) and max(x,y)z ; max(xz,yz). The result has
the form maxl Pl where each Pl is a polynomial without max occurrences [7].

Work-in-progress Implementation. Parallel to the theoretical development, we are working on im-
plementing the essential structural codebase to run the Main Procedure above. Currently, this is still a
prototype, in which we can handle simple interpretation shapes such as additive and linear. See [10] for
more details.

6 Conclusion

In this paper we showed that cost–size tuple pairs can be adapted to handle innermost rewriting. The type-
aware algebraic interpretation style provided the machinery necessary to deal with innermost termination
and a mechanism to bound the innermost runtime complexity of compatible TRSs. We presented sufficient
conditions for feasible (polynomial) bounds on ircR of compatible systems, which are in line with related
works on the literature. This line of investigation is far from over. Since searching for interpretations can
be cumbersome, our immediate future work is to develop new strategies and interpretation shapes. This
has the potential to drastically improve the efficiency of our prototype tool.

Acknowledgments. We wish to thank Cynthia Kop — for the valuable discussions and guidance during
the production of this paper; we thank Niels van der Weide, Marcos Bueno, and Edna Gomes — for
carefully proofread the various manuscript versions of the paper; and we thank the anonymous referees —
for the comments that helped improve the paper.

References
[1] M. Avanzini & G. Moser (2008): Complexity Analysis by Rewriting. In: Proc. FLOPS, doi:10.1007/978-3-

540-78969-7 11.

https://doi.org/10.1007/978-3-540-78969-7_11
https://doi.org/10.1007/978-3-540-78969-7_11

L. Guo & D. Vale 67

[2] P. Baillot & U. Dal Lago (2016): Higher-order interpretations and program complexity. IC,
doi:10.1016/j.ic.2015.12.008.

[3] A. Ben Cherifa & P. Lescanne (1987): Termination of rewriting systems by polynomial interpretations and
its implementation. Science of Computer Programming 9(2), pp. 137–159, doi:https://doi.org/10.1016/0167-
6423(87)90030-X.

[4] G. Bonfante, A. Cichon, J.-Y. Marion & H. Touzet (2001): Algorithms with polynomial interpretation
termination proof. Journal of Functional Programming 11(1), p. 33–53, doi:10.1017/S0956796800003877.

[5] G. Bonfante, J. Marion & J. Moyen (2001): On Lexicographic Termination Ordering with Space Bound
Certifications. In: Proc. PSI, doi:10.1007/3-540-45575-2 46.

[6] A. Cichon & P. Lescanne (1992): Polynomial interpretations and the complexity of algorithms. In: CADE, pp.
139–147, doi:10.1007/3-540-55602-8 161.

[7] M. Codish, I. Gonopolskiy, A. M. Ben-Amram, C. Fuhs & J. Giesl (2011): SAT-based termination analysis
using monotonicity constraints over the integers. Theory and Practice of Logic Programming 11(4-5), p.
503–520, doi:https://doi.org10.1017/S1471068411000147.

[8] E. Contejan, C. Marché, A. P. Tomás & X. Urbain (2005): Mechanically Proving Termination Using Polynomial
Interpretations. JAR (34), doi:10.1007/s10817-005-9022-x.

[9] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto, M. Plucker,
P. Schneider-Kamp, T. Stroder, S. Swiderski & R. Thiemann (2017): Analyzing Program Termination and
Complexity Automatically with AProVE. JAR (58), pp. 3–31, doi:10.1007/s10817-016-9388-y.

[10] L. Guo & D. Vale (2022): Hermes: Innermost Runtime Complexity Analysis Tool. Software Repository.
Available at https://github.com/deividrvale/hermes.

[11] N. Hirokawa & G. Moser (2008): Automated Complexity Analysis Based on the Dependency Pair Method. In:
Proc. IJCAR, doi:10.1007/978-3-540-71070-7 32.

[12] D. Hofbauer (1992): Termination proofs by multiset path orderings imply primitive recursive derivation
lengths. Proc. TCS, doi:10.1007/3-540-53162-9 50.

[13] D. Hofbauer (2001): Termination Proofs by Context-Dependent Interpretations. In: Proc. RTA, doi:10.1007/3-
540-45127-7 10.

[14] D. Hofbauer & C. Lautemann (1989): Termination proofs and the length of derivations. In: Proc. RTA,
doi:10.1007/3-540-51081-8 107.

[15] G. Huet & D.C Oppen (1980): Equations and rewrite rules: a survey. Formal Language Theory: Perspectives
and Open Problems. Available at http://rewriting.loria.fr/documents/CS-TR-80-785.pdf.

[16] C. Kop & D. Vale (2021): Tuple Interpretations for Higher-Order Complexity. In: FSCD, pp. 31:1–31:22,
doi:10.4230/LIPIcs.FSCD.2021.31.

[17] C. Lautemann (1988): A note on polynomial interpretation. Bulletin EATCS volume 4, pp. 129–131.
[18] F. Mitterwallner & A. Middeldorp (2022): Polynomial Termination Over N Is Undecidable. In: Proc. FSCD,

pp. 27:1–27:17, doi:https://doi.org/10.4230/LIPIcs.FSCD.2022.27.
[19] G. Moser (2017): Uniform Resource Analysis by Rewriting: Strengths and Weaknesses (Invited Talk). In: Proc.

FSCD, pp. 2:1–2:10, doi:10.4230/LIPIcs.FSCD.2017.2.
[20] G. Moser, A. Schnabl & J. Waldmann (2008): Complexity Analysis of Term Rewriting Based on Matrix and

Context Dependent Interpretations. In: Proc. IARCS, pp. 304–315, doi:10.4230/LIPIcs.FSTTCS.2008.1762.
[21] L. Noschinski, F. Emmes & J. Giesl (2011): A Dependency Pair Framework for Innermost Complexity Analysis

of Term Rewrite Systems. In: CADE-23, pp. 422–438, doi:10.1007/978-3-642-22438-6 32.
[22] Yoshihito T. (1987): Counterexamples to termination for the direct sum of term rewriting systems. Information

Processing Letters 25(3), pp. 141–143, doi:https://doi.org/10.1016/0020-0190(87)90122-0.
[23] A. Weiermann (1995): Termination proofs for term rewriting systems by lexicographic path orderings imply

multiply recursive derivation lengths. TCS, doi:10.1016/0304-3975(94)00135-6.

https://doi.org/10.1016/j.ic.2015.12.008
https://doi.org/https://doi.org/10.1016/0167-6423(87)90030-X
https://doi.org/https://doi.org/10.1016/0167-6423(87)90030-X
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1007/3-540-45575-2_46
https://doi.org/10.1007/3-540-55602-8_161
https://doi.org/https://doi.org10.1017/S1471068411000147
https://doi.org/10.1007/s10817-005-9022-x
https://doi.org/10.1007/s10817-016-9388-y
https://github.com/deividrvale/hermes
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/3-540-53162-9_50
https://doi.org/10.1007/3-540-45127-7_10
https://doi.org/10.1007/3-540-45127-7_10
https://doi.org/10.1007/3-540-51081-8_107
http://rewriting.loria.fr/documents/CS-TR-80-785.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/https://doi.org/10.4230/LIPIcs.FSCD.2022.27
https://doi.org/10.4230/LIPIcs.FSCD.2017.2
https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
https://doi.org/10.1007/978-3-642-22438-6_32
https://doi.org/https://doi.org/10.1016/0020-0190(87)90122-0
https://doi.org/10.1016/0304-3975(94)00135-6

L. Guo & D. Vale 68

[24] A. Yamada (2022): Tuple Interpretations for Termination of Term Rewriting. J Autom Reasoning,
doi:https://doi.org/10.1007s10817-022-09640-4.

https://doi.org/https://doi.org/10.1007s10817-022-09640-4

© D. Kim
This work is licensed under the
Creative Commons Attribution License.

Equational Theorem Proving for Clauses over Strings

Dohan Kim
A. I. Research Lab, Kyungwon Plaza 201, Sujeong-gu, Seongnam-si, Gyeonggi-do, South Korea

dkim@airesearch.kr

Although reasoning about equations over strings has been extensively studied for several decades,
little research has been done for equational reasoning on general clauses over strings. This pa-
per introduces a new superposition calculus with strings and present an equational theorem proving
framework for clauses over strings. It provides a saturation procedure for clauses over strings and
show that the proposed superposition calculus with contraction rules is refutationally complete. This
paper also presents a new decision procedure for word problems over strings w.r.t. a set of conditional
equations R over strings if R can be finitely saturated under the proposed inference system.

1 Introduction

Strings are fundamental objects in mathematics and many fields of science including computer science
and biology. Reasoning about equations over strings has been widely studied in the context of string
rewriting systems, formal language theory, word problems in semigroups, monoids and groups [8, 14],
etc. Roughly speaking, reasoning about equations over strings replaces equals by equals w.r.t. a given
reduction ordering ≻. For example, if we have two equations over strings u1u2u3 ≈ s and u2 ≈ t with
u1u2u3 ≻ s and u2 ≻ t, where u2 is not the empty string, then we may infer the equation u1tu3 ≈ s by re-
placing u2 in u1u2u3 ≈ s with t. Meanwhile, if we have two equations over strings u1u2 ≈ s and u2u3 ≈ t
with u1u2 ≻ s and u2u3 ≻ t, where u2 is not the empty string, then we should also be able to infer the
equation u1t ≈ su3. This can be done by concatenating u3 to both sides of u1u2 ≈ s (i.e., u1u2u3 ≈ su3)
and then replacing u2u3 in u1u2u3 ≈ su3 with t. Here, the monotonicity property of equations over strings
is assumed, i.e., s≈ t implies usv≈ utv for strings s, t, u, and v.1

This reasoning about equations over strings is the basic ingredient for completion [8, 16] of string
rewriting systems. A completion procedure [8,16] attempts to construct a finite convergent string rewrit-
ing system, where a finite convergent string rewriting system provides a decision procedure for its corre-
sponding equational theory.

Unlike reasoning about equations over strings, equational reasoning on general clauses over strings
has not been well studied, where clauses are often the essential building blocks for logical statements.

This paper proposes a superposition calculus and an equational theorem proving procedure with
clauses over strings. The results presented here generalize the results about completion of equations over
strings [8, 16]. Throughout this paper, the monotonicity property of equations over strings is assumed
and considered in the proposed inference rules. This assumption is natural and common to equations
over strings occurring in algebraic structures (e.g., semigroups and monoids), formal language theory,
etc. The cancellation property of equations over strings is not assumed, i.e., su ≈ tu implies s ≈ t for
strings s, t, and a nonempty string u (cf. non-cancellative [8] algebraic structures).

Now, the proposed superposition inference rule is given roughly as follows:

1Note that it suffices to assume the right monotonicity property of equations over strings, i.e., s ≈ t implies su ≈ tu for
strings s, t, and u, when finding overlaps between equations over strings under the monotonicity assumption.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

D. Kim 70

C∨u1u2 ≈ s D∨u2u3 ≈ tSuperposition:
C∨D∨u1t ≈ su3

if u2 is not the empty string, and u1u2 ≻ s and u2u3 ≻ t.

Intuitively speaking, using the monotonicity property, C∨ u1u2u3 ≈ su3 can be obtained from the
left premise C∨ u1u2 ≈ s. Then the above inference by Superposition can be viewed as an application
of a conditional rewrite rule D∨ u2u3 ≈ t to C∨ u1u2u3 ≈ su3, where u2u3 in C∨ u1u2u3 ≈ su3 is now
replaced by t, and D is appended to the conclusion. (Here, D can be viewed as consisting of the positive
and negative conditions.) Note that both u1 and u3 can be the empty string in the Superposition inference
rule. These steps are combined into a single Superposition inference step. For example, suppose that we
have three clauses 1: ab≈ d, 2: bc≈ e, and 3: ae ̸≈ dc. We use the Superposition inference rule with 1
and 2, and obtain 4: ae ≈ dc from which we derive a contradiction with 3. The details of the inference
rules in the proposed inference system are discussed in Section 3.

The proposed superposition calculus is based on the simple string matching methods and the efficient
length-lexicographic ordering instead of using equational unification and the more complex orderings,
such as the lexicographic path ordering (LPO) [13] and Knuth-Bendix ordering (KBO) [2].

This paper shows that a clause over strings can be translated into a clause over first-order terms,
which allows one to use the existing notion of redundancy in the literature [3, 22] for clauses over
strings. Based on the notion of redundancy, one may delete redundant clauses using the contraction
rules (i.e., Simplification, Subsumption, and Tautology) during an equational theorem proving deriva-
tion in order to reduce the search space for a refutation.

The model construction techniques [3, 22] is adapted for the refutational completeness of the pro-
posed superposition calculus. This paper also uses a Herbrand interpretation by translating clauses over
strings into clauses over first-order terms, where each nonground first-order clause represents all its
ground instances. Note that this translation is not needed for the proposed inference system itself.

Finally, the proposed equational theorem proving framework with clauses over strings allows one to
provide a new decision procedure for word problems over strings w.r.t. a conditional equational theory R
if R can be finitely saturated under the proposed inference system.

2 Preliminaries

It is assumed that the reader has some familiarity with equational theorem proving [3, 22] and string
rewriting systems [8,16,17]. The notion of conditional equations and Horn clauses are discussed in [12].

An alphabet Σ is a finite set of symbols (or letters). The set of all strings of symbols over Σ is denoted
Σ∗ with the empty string λ .

If s ∈ Σ∗, then the length of s, denoted |s|, is defined as follows: |λ | := 0, |a| := 1 for each a ∈ Σ, and
|sa| := |s|+1 for s ∈ Σ∗ and a ∈ Σ.

A multiset is an unordered collection with possible duplicate elements. We denote by M(x) the
number of occurrences of an object x in a multiset M.

An equation is an expression s ≈ t, where s and t are strings, i.e., s, t ∈ Σ∗. A literal is either a
positive equation L, called a positive literal, or a negative equation ¬L, called a negative literal. We also
write a negative literal ¬(s≈ t) as s ̸≈ t. We identify a positive literal s≈ t with the multiset {{s},{t}}
and a negative literal s ̸≈ t with the multiset {{s, t}}. A clause (over Σ∗) is a finite multiset of literals,
written as a disjunction of literals ¬A1 ∨ ·· · ∨¬Am ∨B1 ∨ ·· · ∨Bn or as an implication Γ→ ∆, where

D. Kim 71

Γ = A1∧·· ·∧Am and ∆ = B1∨·· ·∨Bn. We say that Γ is the antecedent and ∆ is the succedent of clause
Γ→ ∆. A Horn clause is a clause with at most one positive literal. The empty clause, denoted □, is the
clause containing no literals.

A conditional equation is a clause of the form (s1 ≈ t1∧·· ·∧ sn ≈ tn)→ l ≈ r. If n = 0, a conditional
equation is simply an equation. A conditional equation is naturally represented by a Horn clause. A
conditional equational theory is a set of conditional equations.

Any ordering ≻S on a set S can be extended to an ordering ≻mul
S on finite multisets over S as follows:

M ≻mul
S N if (i) M ̸= N and (ii) whenever N(x)> M(x) then M(y)> N(y), for some y such that y≻S x.

Given a multiset M and an ordering ≻ on M, we say that x is maximal (resp. strictly maximal) in M
if there is no y ∈M (resp. y ∈M \{x}) with y≻ x (resp. y≻ x or x = y).

An ordering > on Σ∗ is terminating if there is no infinite chain of strings s > s1 > s2 > · · · for any
s ∈ Σ∗. An ordering > on Σ∗ is admissible if u > v implies xuy > xvy for all u,v,x,y ∈ Σ∗. An ordering
> on Σ∗ is a reduction ordering if it is terminating and admissible.

The lexicographic ordering ≻lex induced by a total precedence ordering ≻prec on Σ ranks strings of
the same length in Σ∗ by comparing the letters in the first index position where two strings differ using
≻prec. For example, if a = a1a2 · · ·ak and b = b1b2 · · ·bk, and the first index position where a and b are
differ is i, then a≻lex b if and only if ai ≻prec bi.

The length-lexicographic ordering ≻ on Σ∗ is defined as follows: s ≻ t if and only if |s| > |t|, or
they have the same length and s ≻lex t for s, t ∈ Σ∗. If Σ and ≻prec are fixed, then it is easy to see that
we can determine whether s ≻ t for two (finite) input strings s ∈ Σ∗ and t ∈ Σ∗ in O(n) time, where
n = |s|+ |t|. The length-lexicographic ordering ≻ on Σ∗ is a reduction ordering. We also write ≻ for a
multiset extension of ≻ if it is clear from context.

We say that ≈ has the monotonicity property over Σ∗ if s ≈ t implies usv ≈ utv for all s, t,u,v ∈ Σ∗.
Throughout this paper, it is assumed that ≈ has the monotonicity property over Σ∗.

3 Superposition with Strings

3.1 Inference Rules

The following inference rules for clauses over strings are parameterized by a selection function S and
the length-lexicographic ordering ≻, where S arbitrarily selects exactly one negative literal for each
clause containing at least one negative literal (see Section 3.6 in [22] or Section 6 in [5]). In this strat-
egy, an inference involving a clause with a selected literal is performed before an inference from clauses
without a selected literal for a theorem proving process. The intuition behind the (eager) selection of
negative literals is that, roughly speaking, one may first prove the whole antecedent of a clause from
other clauses. Then clauses with no selected literals are involved in the main deduction process. This
strategy is particularly useful when we consider Horn completion in Section 6 and a decision procedure
for the word problems associated with it. In the following, the symbol ▷◁ is used to denote either≈ or ̸≈.

C∨u1u2 ≈ s D∨u2u3 ≈ tSuperposition:
C∨D∨u1t ≈ su3

if (i) u2 is not λ , (ii) C contains no selected literal, (iii) D contains no selected literal, (iv) u1u2 ≻ s,
and (v) u2u3 ≻ t.2

2We do not require that u1u2 ≈ s (resp. u2u3 ≈ t) is strictly maximal in the left premise (resp. the right premise) because of
the assumption on the monotonicity property of equations over strings (see also Lemma 1 in Section 3.2).

D. Kim 72

C∨u1u2u3 ▷◁ s D∨u2 ≈ t
Rewrite: C∨D∨u1tu3 ▷◁ s

if (i) u1u2u3 ▷◁ s is selected for the left premise whenever ▷◁ is ̸≈, (ii) C contains no selected literal
whenever ▷◁ is ≈, (iii) D contains no selected literal, and (iv) u2 ≻ t.3

C∨ s ̸≈ sEquality Resolution:
C

if s ̸≈ s is selected for the premise.

The following Paramodulation and Factoring inference rules are used for non-Horn clauses contain-
ing positive literals only (cf. Equality Factoring [3, 22] and Merging Paramodulation rule [3]).

C∨ s≈ u1u2 D∨u2u3 ≈ t
Paramodulation: C∨D∨ su3 ≈ u1t

if (i) u2 is not λ , (ii) C contains no selected literal, (iii) C contains a positive literal, (iv) D contains
no selected literal, (v) s≻ u1u2, and (vi) u2u3 ≻ t.

C∨ s≈ t ∨ su≈ tuFactoring:
C∨ su≈ tu

if C contains no selected literal.

In the proposed inference system, finding whether a string s occurs within a string t can be done in
linear time in the size of s and t by using the existing string matching algorithms such as the Knuth-
Morris-Pratt (KMP) algorithm [9]. For example, the KMP algorithm can be used for finding u2 in u1u2u3
in the Rewrite rule and finding u2 in u1u2 in the Superposition and Paramodulation rule.

In the remainder of this paper, we denote by S the inference system consisting of the Superposition,
Rewrite, Equality Resolution, Paramodulation and the Factoring rule, and denote by S a set of clauses
over strings. Also, by the contraction rules we mean the following inference rules–Simplification, Sub-
sumption and Tautology.

S∪{C∨ l1ll2 ▷◁ v, l ≈ r}
Simplification:

S∪{C∨ l1rl2 ▷◁ v, l ≈ r}
if (i) l1ll2 ▷◁ v is selected for C∨ l1ll2 ▷◁ v whenever ▷◁ is ̸≈, (ii) l1 is not λ , and (iii) l ≻ r.

In the following inference rule, we say that a clause C subsumes a clause C′ if C is contained in C′,
where C and C′ are viewed as the finite multisets.

S∪{C,C′}
Subsumption:

S∪{C}
if C ⊆C′.

S∪{C∨ s≈ s}
Tautology:

S
Example 1. Let a≻ b≻ c≻ d≻ e and consider the following inconsistent set of clauses 1: ad≈ b∨ad≈
c, 2: b≈ c, 3: ad ≈ e, and 4: c ̸≈ e. Now, we show how the empty clause is derived:

3Note that u2 ≻ t implies that u2 cannot be the empty string λ .

D. Kim 73

5: ad ≈ c∨ad ≈ c (Paramodulation of 1 with 2)
6: ad ≈ c (Factoring of 5)
7: c≈ e (Rewrite of 6 with 3)
8: e ̸≈ e (c ̸≈ e is selected for 4. Rewrite of 4 with 7)
9: □ (e ̸≈ e is selected for 8. Equality Resolution on 8)

Note that there is no inference with the selected literal in 4 from the initial set of clauses 1, 2, 3, and
4. We produced clauses 5, 6, and 7 without using a selected literal. Once we have clause 7, there is an
inference with the selected literal in 4.

Example 2. Let a≻ b≻ c≻ d and consider the following inconsistent set of clauses 1: aa≈ a∨bd ̸≈ a,
2: cd ≈ b, 3: ad ≈ c, 4: bd ≈ a, and 5: dab ̸≈ db. Now, we show how the empty clause is derived:
6: aa≈ a∨a ̸≈ a (bd ̸≈ a is selected for 1. Rewrite of 1 with 4)
7: aa≈ a (a ̸≈ a is selected for 6. Equality resolution on 6)
8: ac≈ ad (Superposition of 7 with 3)
9: add ≈ ab (Superposition of 8 with 2)
10: ab≈ cd (Rewrite of 9 with 3)
11: dcd ̸≈ db (dab ̸≈ db is selected for 5. Rewrite of 5 with 10)
12: db ̸≈ db (dcd ̸≈ db is selected for 11. Rewrite of 11 with 2)
13: □ (db ̸≈ db is selected for 12. Equality Resolution on 12)

3.2 Lifting Properties

Recall that Σ∗ is the set of all strings over Σ with the empty string λ . We let T (Σ∪{⊥}) be the set of
all first-order ground terms over Σ∪{⊥}, where each letter from Σ is interpreted as a unary function
symbol and ⊥ is the only constant symbol. (The constant symbol ⊥ does not have a special meaning
(e.g., “false”) in this paper.) We remove parentheses for notational convenience for each term in T (Σ∪
{⊥}). Since ⊥ is the only constant symbol, we see that ⊥ occurs only once at the end of each term in
T (Σ∪{⊥}). We may view each term in T (Σ∪{⊥}) as a string ending with⊥. Now, the definitions used
in Section 2 can be carried over to the case when Σ∗ is replaced by T (Σ∪{⊥}). In the remainder of this
paper, we use the string notation for terms in T (Σ∪{⊥}) unless otherwise stated.

Let s ≈ t be an equation over Σ∗. Then we can associate s ≈ t with the equation s(x) ≈ t(x), where
s(x)≈ t(x) represents the set of all its ground instances over T (Σ∪{⊥}). (Here, λ (x) and λ⊥ correspond
to x and ⊥, respectively.) First, s≈ t over Σ∗ corresponds to s⊥≈ t⊥ over T (Σ∪{⊥}). Now, using the
monotonicity property, if we concatenate string u to both sides of s ≈ t over Σ∗, then we have su ≈ tu,
which corresponds to su⊥≈ tu⊥.

There is a similar approach in string rewriting systems. If S is a string rewriting system over Σ∗,
then it is known that we can associate term rewriting system RS with S in such a way that RS := {l(x)→
r(x) | l → r ∈ S} [8], where x is a variable and each letter from Σ is interpreted as a unary function
symbol. We may rename variables (by standardizing variables apart) whenever necessary. This approach
is particularly useful when we consider critical pairs between the rules in a string rewriting system. For
example, if there are two rules aa→ c and ab→ d in S, then we have cb← aab→ ad, where <cb,ad>
(or <ad,cb>) is a critical pair formed from these two rules. This critical pair can also be found if we
associate aa→ c ∈ S with a(a(x))→ c(x) ∈ RS and ab→ d ∈ S with a(b(x))→ d(x) ∈ RS. First, we
rename the rule a(b(x))→ d(x) ∈ RS into a(b(y))→ d(y). Then by mapping x to b(z) and y to z, we
have c(b(z))← a(a(b(z)))→ a(d(z)), where <c(b(z)),a(d(z))> is a critical pair formed from these two
rules. This critical pair can be associated with the critical pair <cb,ad> formed from aa→ c in S and

D. Kim 74

ab→ d in S.
However, if s ̸≈ t is a negative literal over strings, then we cannot simply associate s ̸≈ t with the

negative literal s(x) ̸≈ t(x) over first-order terms. Suppose to the contrary that we associate s ̸≈ t with
s(x) ̸≈ t(x). Then s ̸≈ t implies su ̸≈ tu for a nonempty string u because we can substitute u(y) for
x in s(x) ̸≈ t(x), and su ̸≈ tu can also be associated with s(u(y)) ̸≈ t(u(y)). Using the contrapositive
argument, this means that su≈ tu implies s≈ t for the nonempty string u. Recall that we do not assume
the cancellation property of equations over strings in this paper.4 Instead, we simply associate s ̸≈ t with
s⊥ ̸≈ t⊥. The following lemma is based on the above observations. We denote by T (Σ∪{⊥},X) the set
of first-order terms built on Σ∪{⊥} and a denumerable set of variables X , where each symbol from Σ is
interpreted as a unary function symbol and ⊥ is the only constant symbol.

Lemma 1. Let C := s1 ≈ t1∨·· ·∨ sm ≈ tm∨u1 ̸≈ v1∨·· ·∨un ̸≈ vn be a clause over Σ∗ and P be the set
of all clauses that follow from C using the monotonicity property. Let Q be the set of all ground instances
of the clause s1(x1)≈ t1(x1)∨·· ·∨sm(xm)≈ tm(xm)∨u1⊥ ̸≈ v1⊥∨·· ·∨un⊥ ̸≈ vn⊥ over T (Σ∪{⊥},X),
where x1, . . . ,xm are distinct variables in X and each letter from Σ is interpreted as a unary function
symbol. Then there is a one-to-one correspondence between P and Q.

Proof. For each element D of P, D has the form D := s1w1 ≈ t1w1 ∨ ·· · ∨ smwm ≈ tmwm ∨ u1 ̸≈ v1 ∨
·· · ∨ un ̸≈ vn for some w1, . . . ,wm ∈ Σ∗. (If wi = λ for all 1 ≤ i ≤ m, then D is simply C.) Now, we
map each element D of P to D′ in Q, where D′ := s1w1⊥ ≈ t1w1⊥∨ ·· · ∨ smwm⊥ ≈ tmwm⊥∨ u1⊥ ̸≈
v1⊥∨ ·· · ∨ un⊥ ̸≈ vn⊥. Since ⊥ is the only constant symbol in Σ∪ {⊥}, it is easy to see that this
mapping is well-defined and bijective.

Definition 2. (i) We say that every term in T (Σ∪{⊥}) is a g-term. (Recall that we remove parentheses
for notational convenience.)
(ii) Let s≈ t (resp. s→ t) be an equation (resp. a rule) over Σ∗. We say that su⊥≈ tu⊥ (resp. su⊥→ tu⊥)
for some string u is a g-equation (resp. a g-rule) of s≈ t (resp. s→ t).
(iii) Let s ̸≈ t be a negative literal over Σ∗. We say that s⊥ ̸≈ t⊥ is a (negative) g-literal of s ̸≈ t.
(iv) Let C := s1 ≈ t1∨ ·· · ∨ sm ≈ tm∨u1 ̸≈ v1∨ ·· · ∨un ̸≈ vn be a clause over Σ∗. We say that s1w1⊥ ≈
t1w1⊥∨·· ·∨ smwm⊥≈ tmwm⊥∨u1⊥ ̸≈ v1⊥∨·· ·∨un⊥ ̸≈ vn⊥ for some strings w1, . . . ,wm is a g-clause
of clause C. Here, each wk⊥ ∈ T (Σ∪ {⊥}) for nonempty string wk in the g-clause is said to be a
substitution part of C.
(v) Let π be an inference (w.r.t. S) with premises C1, . . . ,Ck and conclusion D. Then a g-instance of π is
an inference (w.r.t. S) with premises C′1, . . . ,C

′
k and conclusion D′, where C′1, . . . ,C

′
k and D′ are g-clauses

of C1, . . . ,Ck and D, respectively.

Since each term in T (Σ∪{⊥}) is viewed as a string, we may consider inferences between g-clauses
using S. Note that concatenating a (nonempty) string at the end of a g-term is not allowed for any g-term
over T (Σ∪{⊥}). For example, abc⊥d is not a g-term, and a⊥ ̸≈ b⊥∨abc⊥d ≈ de f⊥d is not a g-clause.
We emphasize that we are only concerned with inferences between (legitimate) g-clauses here.

We may also use the length-lexicographic ordering≻g on g-terms. Given a total precedence ordering
on Σ∪{⊥} for which ⊥ is minimal, it can be easily verified that ≻g is a total reduction ordering on
T (Σ∪{⊥}). We simply denote the multiset extension ≻mul

g of ≻g as ≻g for notational convenience.
Similarly, we denote ambiguously all orderings on g-terms, g-equations, and g-clauses over T (Σ∪{⊥})
by≻g. Now, we consider the lifting of inferences of S between g-clauses over T (Σ∪{⊥}) to inferences
of S between clauses over Σ∗. Let C1, . . . ,Cn be clauses over Σ∗ and let

4One may assume the cancellation property and associate s ̸≈ t over strings with s(x) ̸≈ t(x) over first-order terms, which is
beyond the scope of this paper.

D. Kim 75

C′1 . . .C
′
n

C′

be an inference between their g-clauses, where C′i is a g-clause of Ci for all 1 ≤ i ≤ n. We say that this
inference between g-clauses can be lifted if there is an inference

C1 . . .Cn
C

such that C′ is a g-clause of C. In what follows, we assume that a g-literal L′i in C′i is selected in the same
way as Li in Ci, where Li is a negative literal in Ci and L′i is a g-literal of Li.

Lifting of an inference between g-clauses is possible if it does not correspond to a g-instance of an
inference (w.r.t. S) into a substitution part of a clause, which is not necessary (see [4, 22]). Suppose
that there is an inference between g-clauses C′1 . . .C

′
n with conclusion C′ and there is also an inference

between clauses C1 . . .Cn over Σ∗ with conclusion C, where C′i is a g-clause of Ci for all 1≤ i≤ n. Then,
the inference between g-clauses C′1 . . .C

′
n over T (Σ∪{⊥}) can be lifted to the inference between clauses

C1 . . .Cn over Σ∗ in such a way that C′ is a g-clause of C. This can be easily verified for each inference
rule in S.

Example 3. Consider the following Superposition inference with g-clauses:

ad⊥≈ cd⊥∨aabb⊥≈ cbb⊥ abb⊥≈ db⊥
ad⊥≈ cd⊥∨adb⊥≈ cbb⊥

where ad⊥≈ cd⊥∨aabb⊥≈ cbb⊥ (resp. abb⊥≈ db⊥) is a g-clause of a≈ c∨aa≈ c (resp. ab≈ d)
and aabb⊥≻g cbb⊥ (resp. abb⊥≻g db⊥). This Superposition inference between g-clauses can be lifted
to the following Superposition inference between clauses over Σ∗:

a≈ c∨aa≈ c ab≈ d
a≈ c∨ad ≈ cb

where aa ≻ c and ab ≻ d. We see that conclusion ad⊥ ≈ cd⊥∨ adb⊥ ≈ cbb⊥ of the Superposition
inference between the above g-clauses is a g-clause of conclusion a≈ c∨ad ≈ cb of this inference.

Example 4. Consider the following Rewrite inference with g-clauses:

a⊥ ̸≈ d⊥∨aabb⊥ ̸≈ cd⊥ abb⊥≈ cb⊥
a⊥ ̸≈ d⊥∨acb⊥ ̸≈ cd⊥

where aabb⊥ ̸≈ cd⊥ is selected and a⊥ ̸≈ d⊥∨ aabb⊥ ̸≈ cd⊥ (resp. abb⊥ ≈ cb⊥) is a g-clause of
a ̸≈ d∨aabb ̸≈ cd (resp. ab ≈ c) with abb⊥≻g cb⊥. This Rewrite inference between g-clauses can be
lifted to the following Rewrite inference between clauses over Σ∗:

a ̸≈ d∨aabb ̸≈ cd ab≈ c
a ̸≈ d∨acb ̸≈ cd

where aabb ̸≈ cd is selected and ab≻ c. We see that conclusion a⊥ ̸≈ d⊥∨acb⊥ ̸≈ cd⊥ of the Rewrite
inference between the above g-clauses is a g-clause of conclusion a ̸≈ d∨acb ̸≈ cd of this inference.

4 Redundancy and Contraction Techniques

By Lemma 1 and Definition 2, we may translate a clause C := s1 ≈ t1∨·· ·∨sm ≈ tm∨u1 ̸≈ v1∨·· ·∨un ̸≈
vn over Σ∗ with all its implied clauses using the monotonicity property into the clause s1(x1) ≈ t1(x1)∨
·· ·∨ sm(xm)≈ tm(xm)∨u1⊥ ̸≈ v1⊥∨·· ·∨un⊥ ̸≈ vn⊥ over T (Σ∪{⊥},X) with all its ground instances,
where x1, . . . ,xm are distinct variables in X , each symbol from Σ is interpreted as a unary function symbol,
and ⊥ is the only constant symbol. This allows us to adapt the existing notion of redundancy found in
the literature [3, 22].

D. Kim 76

Definition 3. (i) Let R be a set of g-equations or g-rules. Then the congruence↔∗R defines an equality
Herbrand Interpretation I, where the domain of I is T (Σ∪{⊥}). Each unary function symbol s ∈ Σ is
interpreted as the unary function sI , where sI(u⊥) is the g-term su⊥. (The constant symbol ⊥ is simply
interpreted as the constant ⊥.) The only predicate ≈ is interpreted by s⊥≈ t⊥ if s⊥↔∗R t⊥. We denote
by R∗ the interpretation I defined by R in this way. I satisfies (is a model of) a g-clause Γ→ ∆, denoted
by I |= Γ→ ∆, if I ̸⊇ Γ or I∩∆ ̸= /0. In this case, we say that Γ→ ∆ is true in I. We say that I satisfies a
clause C over Σ∗ if I satisfies all g-clauses of C. We say that I satisfies a set of clauses S over Σ∗, denoted
by I |= S, if I satisfies every clause in S.
(ii) A g-clause C follows from a set of g-clauses {C1, . . . ,Cn}, denoted by {C1, . . . ,Cn} |=C, if C is true
in every model of {C1, . . . ,Ck}.
Definition 4. Let S be a set of clauses over Σ∗.
(i) A g-clause C is redundant w.r.t. S if there exist g-clauses C′1, . . . ,C

′
k of clauses C1, . . . ,Ck in S, such

that {C′1, . . . ,C′k} |=C and C ≻g C′i for all 1≤ i≤ k. A clause in S is redundant w.r.t. S if all its g-clauses
are redundant w.r.t. S.
(ii) An inference π with conclusion D is redundant w.r.t. S if for every g-instance of π with maximal
premise C′ (w.r.t. ≻g) and conclusion D′, there exist g-clauses C′1, . . . ,C

′
k of clauses C1, . . . ,Ck in S such

that {C′1, . . . ,C′k} |= D′ and C′ ≻g C′i for all 1≤ i≤ k, where D′ is a g-clause of D.

Lemma 5. If an equation l ≈ r simplifies a clause C∨ l1ll2 ▷◁ v into C∨ l1rl2 ▷◁ v using the Simplification
rule, then C∨ l1ll2 ▷◁ v is redundant w.r.t. {C∨ l1rl2 ▷◁ v, l ≈ r}.

Proof. Suppose that l ≈ r simplifies D :=C∨ l1ll2 ̸≈ v into C∨ l1rl2 ̸≈ v, where l1ll2 ̸≈ v is selected for
D. Then, every g-clause D′ of D has the form D′ :=C′∨ l1ll2⊥ ̸≈ v⊥, where C′ is a g-clause of C. Now,
we may infer that {D′′, ll2⊥≈ rl2⊥} |= D′, where D′′ :=C′∨ l1rl2⊥ ̸≈ v⊥ is a g-clause of C∨ l1rl2 ̸≈ v
and ll2⊥ ≈ rl2⊥ is a g-equation of l ≈ r. We also have D′ ≻g D′′ and D′ ≻g ll2⊥ ≈ rl2⊥, and thus the
conclusion follows.

Otherwise, suppose that l ≈ r simplifies D := C∨ l1ll2 ≈ v into C∨ l1rl2 ≈ v. Then every g-clause
D′ of D has the form D′ := C′ ∨ l1ll2w⊥ ≈ vw⊥ for some w ∈ Σ∗, where C′ is a g-clause of C. Now,
we have {D′′, ll2w⊥≈ rl2w⊥} |= D′, where D′′ :=C′∨ l1rl2w⊥≈ vw⊥ is a g-clause of C∨ l1rl2 ≈ v for
some w ∈ Σ∗ and ll2w⊥ ≈ rl2w⊥ is a g-equation of l ≈ r. We also have D′ ≻g D′′ and D′ ≻g ll2w⊥ ≈
rl2w⊥ because l1 is not λ in the condition of the rule (i.e., l1ll2w⊥ ≻g ll2w⊥), and thus the conclusion
follows.

We see that if C subsumes C′ with C and C′ containing the same number of literals, then they are the
same when viewed as the finite multisets, so we can remove C′. Therefore, we exclude this case in the
following lemma.

Lemma 6. If a clause C subsumes a clause D and C contains fewer literals than D, then D is redundant
w.r.t. {C}.

Proof. Suppose that C subsumes D and C contains fewer literals than D. Then D can be denoted by
C∨B for some nonempty clause B. Now, for every g-clause D′ :=C′∨B′ of D, we have {C′} |= D′ with
D′ ≻g C′, where C′ and B′ are g-clauses of C and B, respectively. Thus, D is redundant w.r.t. {C}.

Lemma 7. A tautology C∨ s≈ s is redundant.

Proof. It is easy to see that for every g-clause C′∨ su⊥≈ su⊥ of C∨ s≈ s, we have |=C′∨ su⊥≈ su⊥,
where u ∈ Σ∗ and C′ is a g-clause of C. Thus, C∨ s≈ s is redundant.

D. Kim 77

5 Refutational Completeness

In this section, we adapt the model construction and equational theorem proving techniques used in [3,
18, 22] and show that S with the contraction rules is refutationally complete.

Definition 8. A g-equation s⊥≈ t⊥ is reductive for a g-clause C := D∨ s⊥≈ t⊥ if s⊥≈ t⊥ is strictly
maximal (w.r.t. ≻g) in C with s⊥≻g t⊥.

Definition 9. (Model Construction) Let S be a set of clauses over Σ∗. We use induction on ≻g to define
the sets RC,EC, and IC for all g-clauses C of clauses in S. Let C be such a g-clause of a clause in S
and suppose that EC′ has been defined for all g-clauses C′ of clauses in S for which C ≻g C′. Then we
define by RC =

⋃
C≻gC′ EC′ . We also define by IC the equality interpretation R∗C, which denotes the least

congruence containing RC.
Now, let C := D∨ s⊥≈ t⊥ such that C is not a g-clause of a clause with a selected literal in S. Then

C produces EC = {s⊥ → t⊥} if the following conditions are met: (1) IC ̸|= C, (2) IC ̸|= t⊥ ≈ t ′⊥ for
every s⊥ ≈ t ′⊥ in D, (3) s⊥ ≈ t⊥ is reductive for C, and (4) s⊥ is irreducible by RC. We say that C
is productive and produces EC if it satisfies all of the above conditions. Otherwise, EC = /0. Finally,
we define IS as the equality interpretation R∗S, where RS =

⋃
C EC is the set of all g-rules produced by

g-clauses of clauses in S.

Lemma 10. (i) RS has the Church-Rosser property.
(ii) RS is terminating.
(iii) For g-terms u⊥ and v⊥, IS |= u⊥≈ v⊥ if and only if u⊥ ↓RS v⊥.
(iv) If IS |= s≈ t, then IS |= usv≈ utv for nonempty strings s, t,u,v ∈ Σ∗.

Proof. (i) RS is left-reduced because there are no overlaps among the left-hand sides of rewrite rules in
RS, and thus RS has the Church-Rosser property.
(ii) For each rewrite rule l⊥→ r⊥ in RS, we have l⊥≻g r⊥, and thus RS is terminating.
(iii) Since RS has the Church-Rosser property and is terminating by (i) and (ii), respectively, RS is con-
vergent. Thus, IS |= u⊥≈ v⊥ if and only if u⊥ ↓RS v⊥ for g-terms u⊥ and v⊥.
(iv) Suppose that IS |= s ≈ t for nonempty strings s and t. Then, we have IS |= svw⊥ ≈ tvw⊥ for all
strings v and w by Definition 3(i). Similarly, since IS is an equality Herbrand interpretation, we also have
IS |= usvw⊥≈ utvw⊥ for all strings u, which means that IS |= usv≈ utv by Definition 3(i).

Lemma 10(iv) says that the monotonicity assumption used in this paper holds w.r.t. a model con-
structed by Definition 9.

Definition 11. Let S be a set of clauses over Σ∗. We say that S is saturated under S if every inference
by S with premises in S is redundant w.r.t. S.

Definition 12. Let C := s1 ≈ t1 ∨ ·· · ∨ sm ≈ tm ∨ u1 ̸≈ v1 ∨ ·· · ∨ un ̸≈ vn be a clause over Σ∗, and C′ =
s1w1⊥≈ t1w1⊥∨·· ·∨smwm⊥≈ tmwm⊥∨u1⊥ ̸≈ v1⊥∨·· ·∨un⊥ ̸≈ vn⊥ for some strings w1, . . . ,wm be a
g-clause of C. We say that C′ is a reduced g-clause of C w.r.t. a rewrite system R if every wi⊥, 1≤ i≤m,
is not reducible by R.

In the proof of the following lemma, we write s[t]su f to indicate that t occurs in s as a suffix and
(ambiguously) denote by s[u]su f the result of replacing the occurrence of t (as a suffix of s) by u.

Lemma 13. Let S be saturated under S not containing the empty clause and C be a g-clause of a clause
in S. Then C is true in IS. More specifically,
(i) If C is redundant w.r.t. S, then it is true in IS.

D. Kim 78

(ii) If C is not a reduced g-clause of a clause in S w.r.t. RS, then it is true in IS.
(iii) If C :=C′∨ s⊥≈ t⊥ produces the rule s⊥→ t⊥, then C′ is false and C is true in IS.
(iv) If C is a g-clause of a clause in S with a selected literal, then it is true in IS.
(v) If C is non-productive, then it is true in IS.

Proof. We use induction on ≻g and assume that (i)–(v) hold for every g-clause D of a clause in S with
C ≻g D.

(i) Suppose that C is redundant w.r.t. S. Then there exist g-clauses C′1, . . . ,C
′
k of clauses C1, . . . ,Ck

in S, such that {C′1, . . . ,C′k} |= C and C ≻g C′i for all 1 ≤ i ≤ k. By the induction hypothesis, each C′i ,
1≤ i≤ k, is true in IS. Thus, C is true in IS.

(ii) Suppose that C is a g-clause of a clause B := s1 ≈ t1 ∨ ·· · ∨ sm ≈ tm ∨ u1 ̸≈ v1 ∨ ·· · ∨ un ̸≈ vn in
S but is not a reduced g-clause w.r.t. RS. Then C is of the form C := s1w1⊥ ≈ t1w1⊥∨ ·· · ∨ smwm⊥ ≈
tmwm⊥∨ u1⊥ ̸≈ v1⊥∨ ·· · ∨ un⊥ ̸≈ vn⊥ for w1, . . . ,wm ∈ Σ∗ and some wk⊥ is reducible by RS. Now,
consider C′ = s1w′1⊥ ≈ t1w′1⊥∨ ·· · ∨ smw′m⊥ ≈ tmw′m⊥∨ u1⊥ ̸≈ v1⊥∨ ·· · ∨ un⊥ ̸≈ vn⊥, where w′i⊥ is
the normal form of wi⊥ w.r.t. RS for each 1≤ i≤ m. Then C′ is a reduced g-clause of B w.r.t. RS, and is
true in IS by the induction hypothesis. Since each wi⊥≈ w′i⊥, 1≤ i≤ m, is true in IS by Lemma 10(iii),
we may infer that C is true in IS.

In the remainder of the proof of this lemma, we assume that C is neither redundant w.r.t. S nor is it a
reducible g-clause w.r.t. RS of some clause in S. (Otherwise, we are done by (i) or (ii).)

(iii) Suppose that C := C′ ∨ s⊥ ≈ t⊥ produces the rule s⊥→ t⊥. Since s⊥→ t⊥ ∈ EC ⊂ RS, we
see that C is true in IS. We show that C′ is false in IS. Let C′ := Γ→ ∆. Then IC ̸|= C′ by Definition 9,
which implies that IC ∩∆ = /0, IC ⊇ Γ, and thus IS ⊇ Γ. It remains to show that IS ∩∆ = /0. Suppose to
the contrary that ∆ contains an equation s′⊥ ≈ t ′⊥ which is true in IS. Since IC ∩∆ = /0, we must have
s′⊥≈ t ′⊥ ∈ I \ IC, which is only possible if s⊥= s′⊥ and IC |= t⊥≈ t ′⊥, contradicting condition (2) in
Definition 9.

(iv) Suppose that C is of the form C := B′∨ s⊥ ̸≈ t⊥, where s⊥ ̸≈ t⊥ is a g-literal of a selected literal
in a clause in S and B′ is a g-clause of B.

(iv.1) If s⊥= t⊥, then B′ is an equality resolvent of C and the Equality Resolution inferences can be
lifted. By saturation of S under S and the induction hypothesis, B′ is true in IS. Thus, C is true in IS.

(iv.2) If s⊥ ̸= t⊥, then suppose to the contrary that C is false in IS. Then we have IS |= s⊥ ≈ t⊥,
which implies that s⊥ or t⊥ is reducible by RS by Lemma 10(iii). Without loss of generality, we assume
that s⊥ is reducible by RS with some rule lu⊥→ ru⊥ for some u∈ Σ∗ produced by a productive g-clause
D′ ∨ lu⊥ ≈ ru⊥ of a clause D∨ l ≈ r ∈ S. This means that s⊥ has a suffix lu⊥. Now, consider the
following inference by Rewriting:

B∨ s[lu]su f ̸≈ t D∨ l ≈ r
B∨D∨ s[ru]su f ̸≈ t

where s[lu]su f ̸≈ t is selected for the left premise. The conclusion of the above inference has a g-clause
C′ := B′∨D′∨ s⊥[ru⊥]su f ̸≈ t⊥. By saturation of S under S and the induction hypothesis, C′ must be
true in IS. Moreover, we see that s⊥[ru⊥]su f ̸≈ t⊥ is false in IS by Lemma 10(iii), and D′ are false in IS

by (iii). This means that B′ is true in IS, and thus C (i.e., C = B′ ∨ s⊥ ̸≈ t⊥) is true in IS, which is the
required contradiction.

(v) If C is non-productive, then we assume that C is not a g-clause of a clause with a selected literal.
Otherwise, the proof is done by (iv). This means that C is of the form C := B′∨su⊥≈ tu⊥, where su⊥≈
tu⊥ is maximal in C and B′ contains no selected literal. If su⊥ = tu⊥, then we are done. Therefore,
without loss of generality, we assume that su⊥ ≻g tu⊥. As C is non-productive, it means that (at least)

D. Kim 79

one of the conditions in Definition 9 does not hold.
If condition (1) does not hold, then IC |= C, so we have IS |= C, i.e., C is true in IS. If condition (1)

holds but condition (2) does not hold, then C is of the form C := B′1∨su⊥≈ tu⊥∨svw⊥≈ t ′vw⊥, where
su = svw (i.e., u = vw) and IC |= tu⊥≈ t ′vw⊥.

Suppose first that tu⊥ = t ′vw⊥. Then we have t = t ′ since u = vw. Now, consider the following
inference by Factoring:

B1∨ s≈ t ∨ sv≈ tv
B1∨ sv≈ tv

The conclusion of the above inference has a g-clause C′ :=B′1∨svw⊥≈ tvw⊥, i.e., C′ :=B′1∨su⊥≈ tu⊥
since u = vw. By saturation of S under S and the induction hypothesis, C′ is true in IS, and thus C is true
in IS.

Otherwise, suppose that tu⊥ ̸= t ′vw⊥. Then we have tu⊥ ↓RC t ′vw⊥ by Lemma 10(iii) and tu⊥ ≻g

t ′vw⊥ because su⊥ ≈ tu⊥ is maximal in C. This means that tu⊥ is reducible by RC by some rule
lτ⊥→ rτ⊥ produced by a productive g-clause D′∨ lτ⊥≈ rτ⊥ of a clause D∨ l ≈ r ∈ S. Now, we need
to consider two cases:

(v.1) If t has the form t := u1u2 and l has the form l := u2u3, then consider the following inference
by Paramodulation:

B∨ s≈ u1u2 D∨u2u3 ≈ r
B∨D∨ su3 ≈ u1r

The conclusion of the above inference has a g-clause C′ := B′∨D′∨ su3τ⊥ ≈ u1rτ⊥ with u = u3τ . By
saturation of S under S and the induction hypothesis, C′ is true in IS. Since D′ is false in IS by (iii),
either B′ or su3τ⊥≈ u1rτ⊥ is true in IS. If B′ is true in IS, so is C. If su3τ⊥≈ u1rτ⊥ is true in IS, then
su⊥≈ tu⊥ is also true in IS by Lemma 10(iii), where t = u1u2 and u = u3τ . Thus, C is true in IS.

(v.2) If t has the form t := u1u2u3 and l has the form l := u2, then consider the following inference
by Rewrite:

B∨ s≈ u1u2u3 D∨u2 ≈ r
B∨D∨ s≈ u1ru3

The conclusion of the above inference has a g-clause C′′ := B′∨D′∨ su⊥≈ u1ru3u⊥ with τ = u3u. By
saturation of S under S and the induction hypothesis, C′′ is true in IS. Since D′ is false in IS by (iii), either
B′ or su⊥≈ u1ru3u⊥ is true in IS. Similarly to case (v.1), if B′ is true in IS, so is C. If su⊥≈ u1ru3u⊥ is
true in IS, then su⊥≈ tu⊥ is also true in IS by Lemma 10(iii), where t = u1u2u3. Thus, C is true in IS.

If conditions (1) and (2) hold but condition (3) does not hold, then su⊥ ≈ tu⊥ is only maximal but
is not strictly maximal, so we are in the previous case. (Since ≻g is total on g-clauses, condition (2)
does not hold.) If conditions (1)–(3) hold but condition (4) does not hold, then su⊥ is reducible by RC

by some rule lτ⊥→ rτ⊥ produced by a productive g clause D′∨ lτ⊥ ≈ rτ⊥ of a clause D∨ l ≈ r ∈ S.
Again, we need to consider two cases:

(v.1’) If s has the form s := u1u2 and l has the form l := u2u3, then consider the following inference
by Superposition:

B∨u1u2 ≈ t D∨u2u3 ≈ r
B∨D∨u1r ≈ tu3

D. Kim 80

The conclusion of the above inference has a g-clause C′ := B′∨D′∨u1rτ⊥ ≈ tu3τ⊥ with u = u3τ . By
saturation of S under S and the induction hypothesis, C′ is true in IS. Since D′ is false in IS by (iii),
either B′ or u1rτ⊥ ≈ tu3τ⊥ is true in IS. If B′ is true in IS, so is C. If u1rτ⊥ ≈ tu3τ⊥ is true in IS, then
su⊥≈ tu⊥ is also true in IS by Lemma 10(iii), where s = u1u2 and u = u3τ . Thus, C is true in IS.

(v.2’) If s has the form s := u1u2u3 and l has the form l := u2, then consider the following inference
by Rewrite:

B∨u1u2u3 ≈ t D∨u2 ≈ r
B∨D∨u1ru3 ≈ t

The conclusion of the above inference has a g-clause C′′ := B′∨D′∨u1ru3u⊥≈ tu⊥ with τ = u3u. By
saturation of S under S and the induction hypothesis, C′′ is true in IS. Since D′ is false in IS by (iii), either
B′ or u1ru3u⊥ ≈ tu⊥ is true in IS. Similarly to case (v.1’), If B′ is true in IS, so is C. If u1ru3u⊥ ≈ tu⊥
is true in IS, then su⊥ ≈ tu⊥ is also true in IS by Lemma 10(iii), where s = u1u2u3. Thus, C is true in
IS.

Definition 14. (i) A theorem proving derivation is a sequence of sets of clauses S0 = S,S1, . . . over Σ∗

such that:
(i.1) Deduction: Si = Si−1∪{C} if C can be deduced from premises in Si−1 by applying an inference

rule in S.
(i.2) Deletion: Si = Si−1 \{D} if D is redundant w.r.t. Si−1.5

(ii) The set S∞ :=
⋃

i(
⋂

j≥i S j) is the limit of the theorem proving derivation.

We see that the soundness of a theorem proving derivation w.r.t. the proposed inference system is
straightforward, i.e., Si |= Si+1 for all i≥ 0.

Definition 15. A theorem proving derivation S0,S1,S2, . . . is fair w.r.t. the inference system S if every
inference by S with premises in S∞ is redundant w.r.t.

⋃
j S j.

Lemma 16. Let S and S′ be sets of clauses over Σ∗.
(i) If S⊆ S′, then any clause which is redundant w.r.t. S is also redundant w.r.t. S′.
(ii) If S ⊆ S′ and all clauses in S′ \ S are redundant w.r.t. S′, then any clause or inference which is
redundant w.r.t. S′ is also redundant w.r.t. S.

Proof. The proof of part (i) is obvious. For part (ii), suppose that a clause C is redundant w.r.t. S′ and
let C′ be a g-clause of it. Then there exists a minimal set N := {C′1, . . . ,C′n} (w.r.t. ≻g) of g-clauses of
clauses in S′ such that N |=C′ and C′ ≻g C′i for all 1≤ i≤ n. We claim that all C′i in N are not redundant
w.r.t. S′, which shows that C′ is redundant w.r.t. S. Suppose to the contrary that some C′j is redundant
w.r.t. S′. Then there exist a set N′ := {D′1, . . . ,D′m} of g-clauses of clauses in S′ such that N′ |= C′j and
C′j ≻g D′i for all 1≤ i≤m. This means that we have {C′1, . . . ,C′j−1,D

′
1, . . . ,D

′
m,C

′
j+1, . . . ,C

′
n} |=C′, which

contradicts our minimal choice of the set N = {C′1, . . . ,C′n}.
Next, suppose an inference π with conclusion D is redundant w.r.t. S′ and let π ′ be a g-instance of it

such that B is the maximal premise and D′ is the conclusion of π ′ (i.e., a g-clause of D). Then there exists
a minimal set P := {D′1, . . . ,D′n} (w.r.t. ≻g) of g-clauses of clauses in S′ such that P |= D′ and B≻g D′i for
all 1≤ i≤ n. As above, we may infer that all D′i in P are not redundant w.r.t. S′, and thus π ′ is redundant
w.r.t. S.

Lemma 17. Let S0,S1, . . . be a fair theorem proving derivation w.r.t. S. Then S∞ is saturated under S.
5Here, an inference by Simplification combines the Deduction step for C∨ l1rl2 ▷◁ v and the Deletion step for C∨ l1ll2 ▷◁ v

(see the Simplification rule).

D. Kim 81

Proof. If S∞ contains the empty clause, then it is obvious that S∞ is saturated under S. Therefore, we
assume that the empty clause is not in S∞.

If a clause C is deleted in a theorem proving derivation, then C is redundant w.r.t. some S j. By
Lemma 16(i), it is also redundant w.r.t.

⋃
j S j. Similarly, every clause in

⋃
j S j\S∞ is redundant w.r.t.

⋃
j S j.

By fairness, every inference π by S with premises in S∞ is redundant w.r.t.
⋃

j S j. Using Lemma 16(ii)
and the above, π is also redundant w.r.t. S∞, which means that S∞ is saturated under S.

Theorem 18. Let S0,S1, . . . be a fair theorem proving derivation w.r.t. S. If S∞ does not contain the
empty clause, then IS∞

|= S0 (i.e., S0 is satisfiable.)

Proof. Suppose that S0,S1, . . . is a fair theorem proving derivation w.r.t. S and that its limit S∞ does not
contain the empty clause. Then S∞ is saturated under S by Lemma 17. Let C′ be a g-clause of a clause
C in S0. If C ∈ S∞, then C′ is true in IS∞

by Lemma 13. Otherwise, if C /∈ S∞, then C is redundant
w.r.t. some S j. It follows that C redundant w.r.t.

⋃
j S j by Lemma 16(i), and thus redundant w.r.t. S∞

by Lemma 16(ii). This means that there exist g-clauses C′1, . . . ,C
′
k of clauses C1, . . . ,Ck in S∞ such that

{C′1, . . . ,C′k} |=C′ and C′ ≻g C′i for all 1≤ i≤ k. Since each C′i , 1≤ i≤ k, is true in IS∞
by Lemma 13, C′

is also true in IS∞
, and thus the conclusion follows.

The following theorem states that S with the contraction rules is refutationally complete for clauses
over Σ∗.

Theorem 19. Let S0,S1, . . . be a fair theorem proving derivation w.r.t. S. Then S0 is unsatisfiable if and
only if the empty clause is in some S j.

Proof. Suppose that S0,S1, . . . be a fair theorem proving derivation w.r.t. S. By the soundness of the
derivation, if the empty clause is in some S j, then S0 is unsatisfiable. Otherwise, if the empty clause is
not in Sk for all k, then S∞ does not contain the empty clause by the soundness of the derivation. Applying
Theorem 18, we conclude that S0 is satisfiable.

6 Conditional Completion

In this section, we present a saturation procedure under S for a set of conditional equations over Σ∗,
where a conditional equation is naturally written as an equational Horn clause. A saturation procedure
under S can be viewed as conditional completion [12] for a set of conditional equations over Σ∗. If a
set of conditional equations over Σ∗ is simply a set of equations over Σ∗, then the proposed saturation
procedure (w.r.t. ≻) corresponds to a completion procedure for a string rewriting system. Conditional
string rewriting systems were considered in [11] in the context of embedding a finitely generated monoid
with decidable word problem into a monoid presented by a finite convergent conditional presentation. It
neither discusses a conditional completion (or a saturation) procedure, nor considers the word problems
for conditional equations over Σ∗ in general.

First, it is easy to see that a set of equations over Σ∗ is consistent. Similarly, a set of conditional
equations R over Σ∗ is consistent because each conditional equation has always a positive literal and
we cannot derive the empty clause from R using a saturation procedure under S that is refutationally
complete (cf. Section 9 in [13]). Since we only consider Horn clauses in this section, we neither need
to consider the Factoring rule nor the Paramodulation rule in S. In the remainder of this section, by a
conditional equational theory R, we mean a set of conditional equations R over Σ∗.

D. Kim 82

Definition 20. Given a conditional equational theory R and two finite words s, t ∈ Σ∗, a word problem
w.r.t. R is of the form φ := s ≈? t. The goal of this word problem is s ̸≈ t. We say that a word problem
s≈? t w.r.t. R is decidable if there is a decision procedure for determining whether s≈ t is entailed by R
(i.e., R |= s≈ t) or not (i.e., R ̸|= s≈ t) .

Given a conditional equational theory R, let G := s ̸≈ t be the goal of a word problem s≈? t w.r.t. R.
(Note that G does not have any positive literal.) Then we see that R∪{s≈ t} is consistent if and only if
R∪{G} is inconsistent. This allows one to decide a word problem w.r.t. R using the equational theorem
proving procedure discussed in Section 5.
Lemma 21. Let R be a conditional equational theory finitely saturated under S. Then Rewrite together
with Equality Resolution is terminating and refutationally complete for R∪{G}, where G is the goal of
a word problem w.r.t. R.

Proof. Since R is already saturated under S, inferences among Horn clauses in R are redundant and
remain redundant in R∪{G} for a theorem proving derivation starting with R∪{G}. (Here, {G} can
be viewed as a set of support [3] for a refutation of R∪{G}.) Now, observe that G is a negative literal,
so it should be selected. The only inference rules in S involving a selected literal are the Rewrite and
Equality Resolution rule. Furthermore, the derived literals from G w.r.t. Rewrite will also be selected
eventually. Therefore, it suffices to consider positive literals as the right premise (because they contain
no selected literal), and G and its derived literals w.r.t. Rewrite as the left premise for the Rewrite rule.
Observe also that if G′ is an immediate derived literal from G w.r.t. Rewrite, then we see that G≻ G′. If
G or its derived literal from G w.r.t. Rewrite becomes of the form u ̸≈ u for some u ∈ Σ∗, then it will also
be selected and an Equality Resolution inference yields the empty clause. Since ≻ is terminating and
there are only finitely many positive literals in R, we may infer that the Rewrite and Equality Resolution
inference steps on G and its derived literals are terminating. (The number of positive literals in R remains
the same during a theorem proving derivation starting with R∪{G} using our selection strategy.)

Finally, since S is refutationally complete by Thereom 19, Rewrite together with Equality Resolution
is also refutationally complete for R∪{G}.

Given a finitely saturated conditional equational theory R under S, we provide a decision procedure
for the word problems w.r.t. R in the following theorem.
Theorem 22. Let R be a conditional equational theory finitely saturated under S. Then the word prob-
lems w.r.t. R are decidable by Rewrite together with Equality Resolution.

Proof. Let φ := s≈? t be a word problem w.r.t. R and G be the goal of φ . We know that by Lemma 21,
Rewrite together with Equality Resolution is terminating and refutationally complete for R∪{G}. Let
R0 := R∪{G},R1, . . . ,Rn be a fair theorem proving derivation w.r.t. Rewrite together with Equality Res-
olution such that Rn is the limit of this derivation. If Rn contains the empty clause, then Rn is inconsistent,
and thus R0 is inconsistent, i.e., {s ̸≈ t}∪R is inconsistent by the soundness of the derivation. Since R is
consistent and {s ̸≈ t}∪R is saturated under S, we may infer that R |= s≈ t.

Otherwise, if Rn does not contain the empty clause, then Rn is consistent, and thus R0 is consistent
by Theorem 19, i.e., {s ̸≈ t}∪R is consistent. Since R is consistent and {s ̸≈ t}∪R is saturated under S,
we may infer that R ̸|= s≈ t.

The following corollary is a consequence of Theorem 22 and the following observation. Let R =
R0,R1, . . . ,Rn be a finite fair theorem proving derivation w.r.t. S for an initial conditional equational
theory R with the limit R̄ := Rn. Then R∪{G} is inconsistent if and only if R̄∪{G} is inconsistent by
the soundness of the derivation and Theorem 19.

D. Kim 83

Corollary 23. Let R = R0,R1, . . . be a fair theorem proving derivation w.r.t. S for a conditional equa-
tional theory R. If R can be finitely saturated under S, then the word problems w.r.t. R are decidable.

Example 5. Let a≻ b≻ c and R be a conditional equational theory consisting of the following rules 1:
aa≈ λ , 2: bb≈ λ , 3: ab≈ λ , 4: ab ̸≈ ba∨ac≈ ca, and 5: ab ̸≈ ba∨ac ̸≈ ca∨bc≈ cb. We first saturate
R under S:

6: λ ̸≈ ba∨ac≈ ca (ab ̸≈ ba is selected for 4. Rewrite of 4 with 3)
7: λ ̸≈ ba∨ac ̸≈ ca∨bc≈ cb (ab ̸≈ ba is selected for 5. Rewrite of 5 with 3)
8: a≈ b (Superposition of 1 with 3)
9: λ ̸≈ bb∨ac≈ ca (λ ̸≈ ba is selected for 6. Rewrite of 6 with 8)
10: λ ̸≈ λ ∨ac≈ ca (λ ̸≈ bb is selected for 9. Rewrite of 9 with 2)
11: ac≈ ca (λ ̸≈ λ is selected for 10. Equality Resolution on 10)
12: λ ̸≈ bb∨ac ̸≈ ca∨bc≈ cb (λ ̸≈ ba is selected for 7. Rewrite of 7 with 8)
13: λ ̸≈ λ ∨ac ̸≈ ca∨bc≈ cb (λ ̸≈ bb is selected for 12. Rewrite of 12 with 2)
14: ac ̸≈ ca∨bc≈ cb (λ ̸≈ λ is selected for 13. Equality Resolution on 13)
15: ca ̸≈ ca∨bc≈ cb (ac ̸≈ ca is selected for 14. Rewrite of 14 with 11)
16: bc≈ cb (ca ̸≈ ca is selected for 15. Equality Resolution on 15)
· · ·
After some simplification steps, we have a saturated set R̄ for R under S using our selection strategy (i.e.,
the selection of negative literals). We may infer that the positive literals in R̄ are as follows. 1′ : bb≈ λ ,
2′ : a ≈ b, and 3′ : bc ≈ cb. Note that only the positive literals in R̄ are now needed to solve a word
problem w.r.t. R because of our selection strategy.

Now, consider the word problem φ := acbcba ≈? bccaba w.r.t. R, where the goal of φ is G :=
acbcba ̸≈ bccaba. We only need the Rewrite and Equality Resolution steps on G and its derived lit-
erals from G using 1′, 2′, and 3′. Note that all the following literals are selected except the empty clause.

4′: bcbcbb ̸≈ bccbbb (Rewrite steps of G and its derived literals from G using 2′).
5′: bcbc ̸≈ bccb (Rewrite steps of 4′ and its derived literals from 4′ using 1′).
6′: ccbb ̸≈ ccbb (Rewrite steps of 5′ and its derived literals from 5′ using 3′).
7′: □ (Equality Resolution on 6′)

Since R̄∪G is inconsistent, we see that R∪G is inconsistent by the soundness of the derivation,
where R and R̄ are consistent. Therefore, we may infer that R |= acbcba≈ bccaba.

7 Related Work

Equational reasoning on strings has been studied extensively in the context of string rewriting systems
and Thue systems [8] and their related algebraic structures. The monotonicity assumption used in this
paper is found in string rewriting systems and Thue systems in the form of a congruence relation (see [8,
17]). See [7, 10, 21, 23] also for the completion of algebraic structures and decidability results using
string rewriting systems. However, those systems are not concerned with equational theorem proving
for general clauses over strings. If the monotonicity assumption is discarded, then equational theorem
proving for clauses over strings can be handled by traditional superposition calculi or SMT with the
theory of equality with uninterpreted functions (EUF) and their variants [6] using a simple translation
into first-order ground terms. Also, efficient SMT solvers for various string constraints were discussed

D. Kim 84

in the literature (e.g., [20]).
Meanwhile, equational theorem proving modulo associativity was studied in [26]. (See also [19] for

equational theorem proving with sequence variables and fixed or variadic arity symbols). This approach
is not tailored towards (ground) strings, so we need an additional encoding for each string. Also, it is not
efficient and does not provide a similar decision procedure discussed in Section 6.

The proposed calculus is the first sound and refutationally complete equational theorem proving
calculus for general clauses over strings under the monotonicity assumption. One may attempt to use
the existing superposition calculi for clauses over strings with the proposed translation scheme, which
translates clauses over strings into clauses over first-order terms discussed in Section 3.2. However, this
does not work because of the Equality Factoring rule [3, 22] or the Merging Paramodulation rule [3],
which is essential for first-order superposition theorem proving calculi in general. For example, consider
a clause a≈ b∨a≈ c with a≻ b≻ c, which is translated into a first-order clause a(x)≈ b(x)∨a(y)≈ c(y).
The Equality Factoring rule yields b(z) ̸≈ c(z)∨a(z)≈ c(z) from a(x)≈ b(x)∨a(y)≈ c(y), which cannot
be translated back into a clause over strings (see Lemma 1). Similarly, a first-order clause produced by
Merging Paramodulation may not be translated back into a clause over strings. If one is only concerned
with refutational completeness, then the existing superposition calculi6 can be adapted by using the
proposed translation scheme. In this case, a saturated set may not be translated back into clauses over
strings in some cases, which is an obvious drawback for its applications (see programs in [3]).

8 Conclusion

This paper has presented a new refutationally complete superposition calculus with strings and provided
a framework for equational theorem proving for clauses over strings. The results presented in this paper
generalize the results about completion of string rewriting systems and equational theorem proving using
equations over strings. The proposed superposition calculus is based on the simple string matching
methods and the efficient length-lexicographic ordering that allows one to compare two finite strings in
linear time for a fixed signature with its precedence.

The proposed approach translates for a clause over strings into the first-order representation of the
clause by taking the monotonicity property of equations over strings into account. Then the existing
notion of redundancy and model construction techniques for the equational theorem proving framework
for clauses over strings has been adapted. This paper has also provided a decision procedure for word
problems over strings w.r.t. a set of conditional equations R over strings if R can be finitely saturated
under the Superposition, Rewrite and Equality Resolution rule. (The complexity analysis of the proposed
approach is not discussed in this paper. It is left as a future work for this decision procedure.)

Since strings are fundamental objects in mathematics, logic, and computer science including formal
language theory, developing applications based on the proposed superposition calculus with strings may
be a promising future research direction. Also, the results in this paper may have potential applications
in verification systems and solving satisfiability problems [1].

In addition, it would be an interesting future research direction to extend our superposition calculus
with strings to superposition calculi with strings using built-in equational theories, such as commutativity,
idempotency [8], nilpotency [15], and their various combinations. For example, research on superposition
theorem proving for commutative monoids [25] is one such direction.

6The reader is also encouraged to see AVATAR modulo theories [24], which is based on the concept of splitting.

D. Kim 85

References
[1] Alessandro Armando, Silvio Ranise & Michael Rusinowitch (2003): A rewriting approach to satisfiability

procedures. Information and Computation 183(2), pp. 140 – 164.
[2] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press, Cam-

bridge, UK.
[3] Leo Bachmair & Harald Ganzinger (1994): Rewrite-based Equational Theorem Proving with Selection and

Simplification. J. Log. Comput. 4(3), pp. 217–247.
[4] Leo Bachmair & Harald Ganzinger (1995): Associative-commutative superposition. In Nachum Dershowitz

& Naomi Lindenstrauss, editors: Conditional and Typed Rewriting Systems, Springer, Berlin, Heidelberg,
pp. 1–14.

[5] Leo Bachmair & Harald Ganzinger (1998): Equational Reasoning in Saturation-Based Theorem Proving.
In Wolfgang Bibel & Peter H. Schmitt, editors: Automated Deduction. A basis for applications, chapter 11,
Volume I, Kluwer, Dordrecht, Netherlands, p. 353–397.

[6] Clark Barrett, Roberto Sebastiani, Sanjit A Seshia & Cesare Tinelli (2009): Satisfiability Modulo Theories.
In: Handbook of satisfiability, Frontiers in Artificial Intelligence and Applications 185, IOS Press, pp. 825–
885.

[7] Ronald V. Book & Colm P. O’Dunlaing (1981): Testing for the Church-Rosser property. Theoretical Com-
puter Science 16(2), pp. 223–229.

[8] Ronald V. Book & Friedrich Otto (1993): String-Rewriting Systems. Springer, New York, NY.
[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein (2001): Introduction to Algo-

rithms, second edition. The MIT Press.
[10] Robert Cremanns & Friedrich Otto (2002): A Completion Procedure for Finitely Presented Groups That Is

Based on Word Cycles. J. Autom. Reason. 28(3), pp. 235–256.
[11] Thomas Deiß (1992): Conditional Semi-Thue systems for Presenting Monoids. In: Annual Symposium on

Theoretical Aspects of Computer Science, STACS 1992, Springer, Berlin, Heidelberg, pp. 557–565.
[12] Nachum Dershowitz (1991): Canonical sets of Horn clauses. In Javier Leach Albert, Burkhard Monien &

Mario Rodrı́guez Artalejo, editors: Automata, Languages and Programming, Springer Berlin Heidelberg, pp.
267–278.

[13] Nachum Dershowitz & David A. Plaisted (2001): Rewriting. In: Handbook of Automated Reasoning, chap-
ter 9, Volume I, Elsevier, Amsterdam, pp. 535 – 610.

[14] David B. A. Epstein, Mike Paterson, James W. Cannon, Derek F. Holt, Silvio V. F. Levy & William Thurston
(1992): Word Processing in Groups. A. K. Peters, Ltd., Natick, MA.

[15] Qing Guo, Paliath Narendran & David A. Wolfram (1996): Unification and matching modulo nilpotence. In
Michael A. McRobbie & John K. Slaney, editors: The 13th International Conference on Automated Deduc-
tion (CADE-13), Lecture Notes in Computer Science 1104, Springer, Berlin, Heidelberg, pp. 261–274.

[16] Derek F. Holt, Bettina Eick & Eamonn A. O’Brien (2005): Handbook of computational group theory. CRC
Press, Boca Raton, FL.

[17] Deepak Kapur & Paliath Narendran (1985): The Knuth-Bendix Completion Procedure and Thue Systems.
SIAM Journal on Computing 14(4), pp. 1052–1072.

[18] Dohan Kim & Christopher Lynch (2021): Equational Theorem Proving Modulo. In: The 28th International
Conference on Automated Deduction (CADE-28), Lecture Notes in Computer Science 12699, Springer, pp.
166–182.

[19] Temur Kutsia (2002): Theorem Proving with Sequence Variables and Flexible Arity Symbols. In Matthias
Baaz & Andrei Voronkov, editors: Logic for Programming, Artificial Intelligence, and Reasoning, 9th In-
ternational Conference, LPAR 2002, Tbilisi, Georgia, October 14-18, 2002, Proceedings, Lecture Notes in
Computer Science 2514, Springer, pp. 278–291.

D. Kim 86

[20] Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark Barrett & Morgan Deters (2016):
An Efficient SMT Solver for String Constraints. Form. Methods Syst. Des. 48(3), p. 206–234.

[21] Klaus Madlener, Paliath Narendran & Friedrich Otto (1991): A Specialized Completion Procedure for
Monadic String-Rewriting Systems Presenting Groups. In Javier Leach Albert, Burkhard Monien &
Mario Rodrı́guez-Artalejo, editors: Automata, Languages and Programming, 18th International Colloquium,
ICALP91, Madrid, Spain, July 8-12, 1991, Proceedings, Lecture Notes in Computer Science 510, Springer,
pp. 279–290.

[22] Robert Nieuwenhuis & Albert Rubio (2001): Paramodulation-based theorem proving. In: Handbook of
Automated Reasoning, chapter 7, Volume I, Elsevier, Amsterdam, pp. 371–443.

[23] Friedrich Otto, Masashi Katsura & Yuji Kobayashi (1997): Cross-Sections for Finitely Presented Monoids
with Decidable Word Problems. In Hubert Comon, editor: Rewriting Techniques and Applications, 8th
International Conference, RTA-97, Sitges, Spain, June 2-5, 1997, Proceedings, Lecture Notes in Computer
Science 1232, Springer, pp. 53–67.

[24] Giles Reger, Nikolaj Bjøner, Martin Suda & Andrei Voronkov (2016): AVATAR Modulo Theories. In
Christoph Benzmüller, Geoff Sutcliffe & Raul Rojas, editors: GCAI 2016. 2nd Global Conference on Artifi-
cial Intelligence, EPiC Series in Computing 41, pp. 39–52.

[25] José Carlos Rosales, Pedro A. Garcı́a-Sánchez & Juan M. Urbano-Blanco (1999): On Presentations of Com-
mutative Monoids. International Journal of Algebra and Computation 09(05), pp. 539–553.

[26] Albert Rubio (1996): Theorem Proving modulo Associativity. In Hans Kleine Büning, editor: Computer
Science Logic, Springer, Berlin, Heidelberg, pp. 452–467.

© M. Pagano and J. E. Solsona
This work is licensed under the Creative Commons
Attribution-Noncommercial License.

Nominal Sets in Agda
A Fresh and Immature Mechanization

Miguel Pagano*

FAMAF - Universidad Nacional de Córdoba
Córdoba, Argentina

miguel.pagano@unc.edu.ar

José E. Solsona
Facultad de Ingenierı́a - Universidad ORT Uruguay

Montevideo, Uruguay
solsona@ort.edu.uy

In this paper we present our current development on a new formalization of nominal sets in Agda. Our
first motivation in having another formalization was to understand better nominal sets and to have a
playground for testing type systems based on nominal logic. Not surprisingly, we have independently
built up the same hierarchy of types leading to nominal sets. We diverge from other formalizations
in how to conceive finite permutations: in our formalization a finite permutation is a permutation
(i.e. a bijection) whose domain is finite. Finite permutations have different representations, for
instance as compositions of transpositions (the predominant in other formalizations) or compositions
of disjoint cycles. We prove that these representations are equivalent and use them to normalize (up
to composition order of independent transpositions) compositions of transpositions.

1 Introduction

Nominal sets were introduced to Computer Science by Gabbay and Pitts to give an adequate mathemat-
ical universe that permits the definition of inductive sets with binding [8]. Instead of taking equivalence
classes of inductively defined sets (as in a formal treatment of, say, the Lambda Calculus) or a particular
representation of the variables (as in the de Bruijn approach to Lambda Calculus), nominal sets have
a notion of name abstraction that ensures all the properties expected for binders; in particular, alpha-
equivalent lambda terms are represented by the same element of the nominal set of lambda terms.

In this paper we present a new mechanization [9] of nominal sets. Most of the current mechanizations
of nominal sets represent finite permutations as compositions of transpositions, where transpositions are
represented by pairs of atoms and compositions as lists. In contrast, our starting point is permutations
(i.e. bijective functions); finite permutations are permutations that can be represented by composition
of transpositions. Moreover they conflate the set of atoms mentioned in a list with twhe domain of
the (represented) permutation. Pondering about this issue, we decided to develop a “normalization”
procedure for representations of finite permutations; in order to prove its correctness, we were driven to
introduce cycle notation.

The rest of this paper is structured into three sections. In Sect. 2 we summarize the fundamentals
of Nominal Sets; then, in Sect. 3 we present the most salient aspects of our mechanization in Agda;
and finally in Sect. 4 we conclude by mentioning related works and contrasting them with our approach,
indicating also our next steps. We assume some knowledge of Agda, but also hope that the paper can be
followed by someone familiar with any other language based on type theory.

*Most of this work was done in a research leave in ORT Uruguay, financed by Agencia Nacional de Investigación e Inno-
vación (ANII) of Uruguay.

https://creativecommons.org
https://creativecommons.org/licenses/by-nc/4.0/

M. Pagano and J. E. Solsona 88

2 Fundamentals of Nominal Sets

In this section we summarize the main concepts underlying the notion of Nominal Sets; for a more
complete treatment we refer the reader to [11]. We repeat the basic definitions of group and group action.
A group is a set G with a distinguished element (ε ∈ G, the unit), a binary operation (· : G×G → G,
the multiplication), and a unary operation (−1 : G → G, the inverse), satisfying the following axioms:

ε ·g = g = g · ε g · (g−1) = ε = g−1 ·g g1 · (g2 ·g3) = (g1 ·g2) ·g3

Although a group is given by the tuple (G,ε, · , −1) (and the proofs that these operations satisfy the
axioms) we will refer to the group simply by G. A sub-group of G is a subset H ⊆ G such that ε ∈ H and
H is closed under the inverse and multiplication.

Let G be a group. A G-set is a set X with an operation • : G×X → X (called the action) satisfying:

ε • x = x g• (g′ • x) = (g ·g′)• x

A morphism between G-sets X and Y is a function F : X → Y that commutes with the actions:

F (g• x) = g•F x

These are called equivariant functions. Since idX is equivariant and the composition of equivariant
functions yields an equivariant function we can talk of the category of G-Sets.

Any set X can be seen as a G-set by letting g • x = x; such a G-set is called the discrete G-set.
Moreover any group acts on itself by the multiplication.

One can form the (in)finitary product of G-sets by defining the action of g on a tuple in a point-
wise manner: g• ⟨t, t ′⟩= ⟨g• t,g• t ′⟩; the projections and the product morphism ⟨F,H⟩ are equivariant,
assuming that F and H are also equivariant. G-set, as a category, also has co-products.

If X and Y are G-sets one can endow the set Y X of functions from X to Y with the conjugate action:
(g•F)x = g• (F (g−1 • x)).

G-sets over the Permutation Group The group of symmetries over a set A consists of G = Sym(A),
where Sym(A) is the set of bijections on A; the multiplication of Sym(A) is composition, the inverse is
the inverse bijection, and the unit is the identity.

Let Perm(A) be the subset of Sym(A) of bijections that changes only finitely many elements; i.e.,
f ∈ Perm(A) if supp(f) = {a ∈ A | f a ̸= a} is finite. It is straightforward to prove that Perm(A) is a
sub-group of Sym(A). Of course, if A is finite, then Perm(A) = Sym(A). Notice that A is a Perm(A)-set
with the action being function application: π • a = π a. A basic result is that every finite permutation
can be decomposed as the composition of transpositions: if a,a′ ∈ A, then (a a′) is the permutation that
swaps a with a′ and is the identity in A\{a,a′}.

Nominal Sets Let X be a Perm(A)-set, we say that x : X is supported by A ⊆ A if

∀π.(∀a ∈ A.π a = a) =⇒ π • x = x .

We say that X is a nominal set if each element of X is supported by some finite subset of A. Since each
finite permutation can be decomposed as a composition of transpositions, then one can prove that the
above definition is equivalent to

∀a,a′ ∈ A\A.(a a′)• x = x .

M. Pagano and J. E. Solsona 89

In his book [11] Pitts uses classical logic to prove that if x is supported by some finite set A, then
there exists a least supporting set, called the support of x. As shown by Swan [12] one cannot define
the least support in a constructive setting; therefore a formalization in a constructive type theory should
ask for “some” finite support. This affects the notion of freshness: in classical logic, x is fresh for y if
supp(x)∩ supp(y) = /0, with x ∈ X and y ∈ Y being elements of different nominal sets; in a constructive
setting one has to limit this relation to atoms: a ∈ A is fresh for x ∈ X if a ̸∈ supp(x), where supp(x) is
the set supporting x, not necessarily the least one. Notice that the definition is the same (“there exists
some finite support for each element”), but in classical logic that is sufficient to obtain the least support.

3 Our Formalization in Agda

Our formalization is developed on top of the Agda’s standard library [13]. The standard library includes
an algebraic structure going beyond groups; it lacks, however, a formalization of group actions. We
present first the definition of Group in the standard library:

record Group c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
≈ : Rel Carrier ℓ
· : Op2 Carrier
ε : Carrier
_−¹ : Op1 Carrier
isGroup : IsGroup _≈_ _·_ ε _−¹

A Group is a bundle where the components of its definition (the carrier set, the unit, the inverse, the
composition) are explicitly mentioned plus a proof isGroup that they satisfy the axioms. Notice that one
of the fields is a relation ≈ ; that relation should be an equivalence relation over the carrier: essentially
this amounts to say that the Carrier has a setoid structure. Setoids allows for greater flexibility as they
enable to work with a notion of equality that is not the propositional equality; Func A B is the set of
functions between setoids A and B that preserve the equality.

G-Sets Our first definition is the structure that collects the equations required for an action. In the
following, we are under a module parameterized by G : Group.

record IsAction (F : Func (G.setoid ×s A) A) : Set _ where
·a : Carrier G � Carrier A � Carrier A
g ·a x = Func.f F (g , x)
field
ida : ∀ x � ε ·a x ≈A x
compa : ∀ g' g x � g' ·a g ·a x ≈A (g' · g) ·a x

Notice that the record-type IsAction is a predicate over functions from the setoid G×A to A. The
definition of GSet is straightforward and follows the pattern of the standard library:

record GSet : Set _ where
field
set : Setoid ℓ1 ℓ2
action : Func (G.setoid ×s set) set
isAction : IsAction action

M. Pagano and J. E. Solsona 90

The next concept is that of equivariant function.1

record Equivariant (A : GSet) (B : GSet) : Set _ where
field
F : Func (set A) (set B)
isEquivariant : IsEquivariant (action A) (action B) F

Permutations A finite permutation can be given by a bijective map, as a composition of transpositions,
or as a composition of disjoint cycles. Let us exhibit this with a concrete example; let f : N → N be
defined as f x = (x+ 2)mod 6 if x < 6 and f x = x if x ⩾ 6; it can be expressed as the composition
of two cycles: (135) (024). Alternatively, it can also be expressed as composition of transpositions
(1 3)(3 5)(0 2)(2 4).

Transpositions are defined over a decidable setoid; in the following we assume that A-setoid has
type DecSetoid ℓ ℓ', and _

?
=_ decides the equality.

A = Carrier A-setoid ; _≈A_ = _≈_ A ; Perm = Inverse A-setoid A-setoid
transp : A � A � A � A

transp a b c with does (c
?
= a)

... | true = b

... | false with does (c
?
= b)

... | true = a

... | false = c

We started with the following syntactic representation of Finite Permutations:

≈p : Rel Perm _
F ≈p G = (x : Carrier A) � f F x ≈A f G x

data FinPerm : Set ℓ where
Id : FinPerm
Comp : (p q : FinPerm) � FinPerm
Swap : (a b : A) � FinPerm

In order to define the bijection represented by p : FinPerm we use transp and its properties; here we
need to ask the A-setoid to be decidable.

J_K : FinPerm � Perm
J Id K = idp setoid
J Comp p q K = J q K ◦p J p K -- _◦p_ is the composition of Perm
J Swap a b K = record {

f = transp a b ; f−¹ = transp a b
; cong1 = transp-respects-≈ a b ; cong2 = transp-respects-≈ a b
; inverse = transp-involutive a b , transp-involutive a b }

The decidability of the equivalence of A-setoid implies the decidability of finite permutations:

_
?
=p_ : ∀ p q � Dec (J p K ≈p J q K)

The point is that one does not need to check all the atoms but only those in the support of p. Moreover we
can define a correct “normalization” procedure to get a permutation equal to p but without any redundant
transposition (and at most one Id), passing through a representation by cycles:

1We note that Choudhury defines equivariant functions only for the group of finite permutations; it seems absent in the
mechanization of Paranhos and Ventura.

M. Pagano and J. E. Solsona 91

norm : FinPerm � FinPerm
norm = cycles-to-FP ◦ cycles-from-FP
norm-corr : ∀ p � J p K ≈p J norm p K

The functions cycles-to-FP maps lists of disjoint cycles to FinPerm and cycles-from-FP goes in the
reverse direction, producing a list of disjoint cycles from a FinPerm.

Let us remark that FinPerm is just a representation and the set of finite permutation, PERM, is the
subset of Perm corresponding to the image of J_K:

PERM : Set _
PERM = Σ[p ∈ Perm] (Σ[q ∈ FinPerm] (p ≈p J q K))

Nominal Sets Remember that a subset A ⊆ A is a support for x if every permutation fixing every
element of A fixes x, through the action. A subset of a setoid A can be defined either as a predicate or as
pairs (just as in PERM where the predicate is λ p � Σ[q ∈ FinPerm] (p ≈p J q K)) or as another
type, say B, together with an injection ι : Injection B A.
variable
X : GSet
P : SetoidPredicate A-setoid

is-supp : Pred X _
is-supp x = (π : PERM) � (predicate P ⊆ _/∈-dom (proj1 π)) � (π ·a x) ≈X x

The predicate λ a � f (proj1 π) a ≈A a is _/∈-dom (proj1 π); therefore, if P a iff a ∈ A, then
predicate P ⊆ _/∈-dom (proj1 π) is a correct formalization of ∀a ∈ A.π a = a.

Our official definition of support is the following:
supports : Pred X _
supports x = ∀ {a b} � a /∈s P � b /∈s P � SWAP a b ·a x ≈X x

Here SWAP is a PERMutation equal to JSwap a bK. We formally proved that both definitions are equivalent.
In order to define nominal sets we need to choose how to say that a subset is finite; as explained by

Coquand and Spiwak [7] there are several possibilities for this. We choose the easiest one: a predicate is
finite if there is a list that enumerates all the elements satisfying the predicate.
finite : Pred (SetoidPredicate setoid) _
finite P = Σ[as ∈ List Carrier] (predicate P ⊆ (_∈ as))

A GSet is nominal if all the elements of the underlying set are finitely supported.
record Nominal (X : GSet) : Set _ where

field
sup : ∀ x � Σ[P ∈ SetoidPredicate setoid] (finite P × P supports x)

It is easy to prove that various constructions are nominals; for instance any discrete GSet is nominal
because every element is supported by the empty predicate ⊥s:
∆-nominal : (S : Setoid _ _) � Nominal (∆ S)
sup (∆-nominal S) x = ⊥s , ⊥-finite , (λ _ _ � S-refl {x = x})
where open Setoid S renaming (refl to S-refl)

We have defined GSet-⇒ A B corresponding to the GSet of equivariant functions from A to B; now we
can prove that GSet-⇒ A B is nominal, again with ⊥s as the support for any F : Equivariant A B.
�-nominal : Nominal (GSet-⇒ A B)
sup (�-nominal) F = ⊥s , ⊥-finite , λ _ _ � supported

where
supported : ∀ {a b} x � f ((SWAP a b) ·� F) x ≈B f F x

M. Pagano and J. E. Solsona 92

4 Conclusion

Nominal techniques have been adopted in various developments. We distinguish developments borrow-
ing some concepts from nominal techniques to be applied in specific use cases (e.g. formalization of
languages with binders like the λ or π calculus with their associated meta-theory) [2, 6, 5, 4] from more
general developments aiming to formalize at least the core aspects of the theory of nominal sets. We are
more concerned with the later type.

The nominal datatype package for Isabelle/HOL [14] developed by Urban and Berghofer implements
an infrastructure for defining languages involving binders and for reasoning conveniently about alpha-
equivalence classes. This Isabelle/HOL package inspired Aydemir et al. [1] to develop a proof of concept
for the Coq proof assistant, however it had no further development. In his Master thesis [3], Choudhury
notes that none of the previous developments following the theory of nominal sets were based on con-
structive foundations. He showed that a considerable portion (most of the first four chapters of Pitts
book [11]) of the theory of nominal sets can also be developed constructively by giving a formalization
in Agda. Pitts original work is based on classical logic, and depends heavily on the existence of the
smallest finite support for an element of a nominal set. However, Swan [12] has shown that in general
this existence cannot be constructively guaranteed, as it would imply the law of the excluded middle.

Choudhury works with the notion of some non-unique support. In order to formalize the category of
Nominal Sets, Choudhury preferred setoids instead of postulating functional extensionality. As far as we
know, Choudhury is still the most comprehensive mechanization in terms of instances of constructions
having a nominal structure.

Recently Paranhos and Ventura [10] presented a constructive formalization in Coq of the core notions
of nominal sets: support, freshness and name abstraction. They follow closely Choudhury’s work in
Agda [3], acknowledging the importance of working with setoids. They claim that by using Coq’s type
class and setoid rewriting mechanism, much shorter and simpler proofs are achieved, circumventing the
“setoid hell” described by Choudhury.

Both of those two formalizations in type theory take a very pragmatic approach to finite permutations:
a finite permutation is a list of pairs of names. In our approach, we start with the more general notion
of bijective function from which the finite permutations are obtained as a special case; moreover having
different representations allowed us to state and prove some theorems that cannot even be stated in the
other formalizations. So far, our main contributions are: the representation of finite permutations and the
normalization of composition of transpositions; the equivalence between two definitions of the relation
“A supports the element x”; and proving that the extension of every container type can be enriched with
a group action (notice that this cover lists, trees, etc.).

Our next steps are the definition of freshness, we are studying an alternative notion of support that
would admit having a freshness relation between elements of two nominal sets (in contrast with other
mechanization that only consider “the atom a is fresh for x”) and name abstraction. In parallel we hope
to be able to prove that extensions of finite containers on nominal sets are also nominal sets. We also
hope to streamline further some rough corners of our development.

Acknowledgments

This formalization grew up from discussions with the group of the research project “Type-checking for
a Nominal Type Theory”: Maribel Fernández, Nora Szasz, Álvaro Tasistro, and Sebastián Urciouli.
We thank Cristian Vay for discussions about group theory. This work was partially funded by Agencia
Nacional de Investigación e Innovación (ANII) of Uruguay.

M. Pagano and J. E. Solsona 93

References
[1] Brian E. Aydemir, Aaron Bohannon & Stephanie Weirich (2007): Nominal Reasoning Tech-

niques in Coq: (Extended Abstract). Electron. Notes Theor. Comput. Sci. 174(5), pp. 69–77,
doi:10.1016/j.entcs.2007.01.028.

[2] Jesper Bengtson & Joachim Parrow (2009): Formalising the pi-calculus using nominal logic. Log. Methods
Comput. Sci. 5(2). Available at http://arxiv.org/abs/0809.3960.

[3] Pritam Choudhury (2015): Constructive Representation of Nominal Sets in Agda. Master’s thesis, Cambridge
University.

[4] Ernesto Copello, Nora Szasz & Álvaro Tasistro (2018): Formalisation in Constructive Type Theory of Baren-
dregt’s Variable Convention for Generic Structures with Binders. Electronic Proceedings in Theoretical
Computer Science 274.

[5] Ernesto Copello, Nora Szasz & Álvaro Tasistro (2018): Machine-checked Proof of the Church-Rosser Theo-
rem for the Lambda Calculus Using the Barendregt Variable Convention in Constructive Type Theory. Elec-
tronic Notes in Theoretical Computer Science 338, pp. 79–95.

[6] Ernesto Copello, Álvaro Tasistro, Nora Szasz, Ana Bove & Maribel Fernández (2016): Alpha-Structural
Induction and Recursion for the Lambda Calculus in Constructive Type Theory. Electronic Notes in Theo-
retical Computer Science 323, pp. 109–124. Proceedings of the Tenth Workshop on Logical and Semantic
Frameworks, with Applications (LSFA 2015).

[7] Thierry Coquand & Arnaud Spiwack (2010): Constructively finite? In: Contribuciones cientı́ficas en honor
de Mirian Andrés Gómez, Universidad de La Rioja, pp. 217–230.

[8] M. J. Gabbay & A. M. Pitts (2002): A New Approach to Abstract Syntax with Variable Binding. Formal
Aspects of Computing 13, pp. 341–363.

[9] Miguel Pagano & José E. Solsona (2022): Nominal Sets in Agda. https://github.com/miguelpagano/
nominal-sets/.

[10] Fabrı́cio S. Paranhos & Daniel Ventura: Towards a Formalization of Nomi-
nal Sets in Coq. https://popl22.sigplan.org/details/CoqPL-2022-papers/4/
Towards-a-Formalization-of-Nominal-Sets-in-Coq. Online; accessed 1 May 2022.

[11] Andrew M. Pitts (2013): Nominal Sets: Names and Symmetry in Computer Science. Cambridge tracts in
Theoretical Computer Science, Cambridge University Press, Cambridge, England.

[12] Andrew Swan (2017): Some Brouwerian Counterexamples Regarding Nominal Sets in Constructive Set The-
ory, doi:10.48550/ARXIV.1702.01556. Available at https://arxiv.org/abs/1702.01556.

[13] The Agda Team (2021): The Agda standard library, version 1.7. https://github.com/agda/agda-stdlib.
[14] Christian Urban & Stefan Berghofer (2006): A Recursion Combinator for Nominal Datatypes Imple-

mented in Isabelle/HOL. In Ulrich Furbach & Natarajan Shankar, editors: Automated Reasoning, Third
International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, Lec-
ture Notes in Computer Science 4130, Springer, pp. 498–512, doi:10.1007/11814771 41. Available at
https://doi.org/10.1007/11814771 41.

https://doi.org/10.1016/j.entcs.2007.01.028
http://arxiv.org/abs/0809.3960
https://github.com/miguelpagano/nominal-sets/
https://github.com/miguelpagano/nominal-sets/
https://popl22.sigplan.org/details/CoqPL-2022-papers/4/Towards-a-Formalization-of-Nominal-Sets-in-Coq
https://popl22.sigplan.org/details/CoqPL-2022-papers/4/Towards-a-Formalization-of-Nominal-Sets-in-Coq
https://doi.org/10.48550/ARXIV.1702.01556
https://arxiv.org/abs/1702.01556
https://github.com/agda/agda-stdlib
https://doi.org/10.1007/11814771_41
https://doi.org/10.1007/11814771_41

© J. Santos et al.
This work is licensed under the
Creative Commons Attribution License.

Tool support for interval specifications in differential
dynamic logic*

Jaime Santos
Universidade do Minho, Braga, Portugal

CIDMA, Univ. Aveiro, Portugal

Alexandre Madeira
CIDMA, Univ. Aveiro, Portugal

Daniel Figueiredo
CIDMA, Univ. Aveiro, Portugal

A wide range of methods and techniques from computer science, and particularly from systems
modeling and verification, is being applied to many modern engineering domains, including synthetic
biology.

Most behaviors described in synthetic biology have a hybrid nature, in the sense that both discrete
or continuous evolutions are observed. Differential Dynamic Logic (dL) is a well-known formalism
used for the rigorous treatment of these systems by considering variables whose valuations change
through differential equations and discrete assignments. Since the models of synthetic biology are
usually described by ranges of values, due to errors and perturbations of observed quantities, recent
work within the team proposed an interval version of dL , where variables are interpreted as intervals.

This paper presents the first steps in the development of computational support for this formalism.
On this view, we introduce a tool to build models based on intervals, prepared to translate them into
specifications ready to be processed by the KeYmaera X tool.

1 Interval dL

Hybrid systems – those composed of continuous and discrete components – are, nowadays, everywhere,
from the medical devices we use to the aerospace artifacts we have. Due to the critical role that some of
them play in our life, the scientific community was pushed to develop theories and tools to support the
trustworthy conception of these systems, not only via simulation techniques (e.g. with Simulink) but
also using program verification techniques and logic.

Differential Dynamic Logic [10], with its supporting tool KeYmaera X [9], represents a core formal-
ism in this context. This approach brings principles and techniques from program verification to hybrid
systems developers, namely from dynamic logic [7]. The formalism has been successfully applied to sev-
eral computational hybrid systems scenarios such as plane traffic, surgical robots and automotive cruise
control [10]; but also in other less obvious domains, including the specification and analysis of models
in biology [6].

Roughly speaking, differential dynamic logic enriches the structure of atomic programs of dynamic
logic, which are basic assignments x := θ for discrete state transitions, with the continuous evolution
of states x′ := θ & χ . This kind of atomic program allows us to express and prove the correctness of
assertions like “from a point where x = 0 it is always true that running a program that makes x grow
with a rate of two units per unit of time, x will be positive” with the formula x = 0 → [x′ = 2]x ≥ 0. Then,
with the soundproof calculus for dL , and with the KeYmaera X tool - a semi-automatic prover - we can
prove the correctness of such assertions. When the user provides a formula of dL as input, KeYmaera

*This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for
Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-030947.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

J. Santos et al. 95

X either generates its proof or retrieves some simpler formulas - preconditions - that are required to be
valid to prove the formula.

In [4], an interval syntax is developed for dL , regarding its application in contexts where variables
are presented in terms of intervals, namely due to errors or uncertainty. This can be useful, for instance,
whenever we want to model a physical system and there is some uncertainty in a position pos = [a,b]
or whenever we want to make an assignment of an irrational number without machine representation.
Apart from replacing real numbers with closed intervals, the interval syntax is the same as in dL and the
semantics are adapted to the interval context, namely following the work of Moore ([8]). Real numbers
are considered as degenerated intervals of the form [a,a] for a ∈ R. These semantics consider a “strict”
interpretation over closed intervals, i.e. a symbol like +∈ Σ is interpreted as “interval sum”, for instance.
Also, logical and state variables are evaluated over I (R). Particularly, a predicate P(X1, ...Xn) is said
to be true if P(x1, ...,xn) holds for every (x1, ...,xn) ∈ X1 × ...×Xn. Three functions are used to interpret
formulas: an interpretation I – for rigid symbols in Σ\Σfl; an assignment η – for logical variables in X ;
and a state v – for state variables in Σfl. A formula is said to be valid if it is true for every triple (I,η ,v).
The semantics of dL can be seen as a particular case of the interval one since the interpretation of its
formulas is done over real numbers (the set of degenerated intervals).

The semantics of dL (see [10]) is straightforwardly adapted to the interval version. However,
the main difference is observed in continuous evolutions (differential equations constrained by a first-
order formula χ). Given an initial state u, a system of differential equations −→x ′ = (f1(

−→x), ..., fn(
−→x))

and a first-order formula χ , the set of reachable states is obtained by computing the solution F(t) =
(F1(t), ...,Fn(t)) of the differential equation f whose initial conditions are set by the state u. For each t̄ ∈
R+

0 we can define a reachable state v according to FI (R)(t̄) and χ in such a way that b ∈ Rn ∈ FI (R)(t̄)
if there is an initial state a ∈Rn such that F(t̄) = b and F(t) satisfies χ for every t ∈ [0, t̄]. This definition
verifies correctness and optimality because of the continuity of F (see [4] for more details).

This paper presents a parser for this interval syntax and a translator which accepts interval dL formu-
las and retrieves equivalent ones in standard dL . We illustrate the framework by modeling a biological
regulatory network [5] – where there is a great level of uncertainty and variables like concentration of
a protein or other components are rather expressed in intervals than with a determined value. For this
example, we consider a formula in the interval syntax of dL , describing a property of the system, and
use our parser and translator to obtain its equivalent formula in dL standard syntax. We then use the
automatic tactic of KeYmaera X to prove the correctness of this example.

2 The idDL2dDL tool

This section introduces a tool to parse and translate specifications from interval dL to specifications in
standard dL . The implementation, developed in Python, is structured in four main parts – the lexer, the
parser, the translator and a graphical user interface (GUI). Detailed user instructions are available in
the GitHub repository 1.

The lexer, as the name suggests, performs the lexical analysis of the expressions provided as input,
which is the process of converting a sequence of characters into tokens. This component is implemented
by comparing the current character to a predefined list of allowed symbols and either generating and
appending the token to a list, or returning an error. It is also crucial that the order of the inputted text is
preserved, therefore our lexer has an attribute in the form of a Position class, which advances its position
every time a new token is successfully created.

1github.com/JaimePSantos/idDL2DL

https://github.com/JaimePSantos/idDL2DL

J. Santos et al. 96

Figure 1: Translation of a simple example in idDL2dDL.

The parser is then called to perform a syntactic analysis over these tokens, returning an abstract
syntax tree (AST) as output. The AST is composed of nodes, and the different types of nodes can
be at different depths of the tree, according to the priority degrees of the operations. The nodes were
constructed following the definition of hybrid program grammar presented in [10]

α,β ::= x := θ | ?χ | x′ = θ&χ | α ∪β | α;β | α
∗

where α,β are hybrid programs, x is a variable, θ a term which may or may not contain variables, and χ

a formula of first-order logic. The degrees of priority are then obtained by a series of binary operations
between tokens, which ultimately reduce to atomic types that produce the proper nodes in the right order,
or return an error if an illegal operation is detected.

The final step in processing the text is the translation of the interval dynamic logic expressions into
regular dL formulas. The translator is composed of several visit methods for each type of node. These
methods, when called, evaluate the tokens inside the node and convert them accordingly, preserving the
priority degree of the AST. For example, when a token of the interval type is detected inside a node, an
object of the TranslatedInterval class is tasked with creating an inequation between a fresh variable and
the lower and upper bounds of the interval. However, since we want to produce a syntax that KeYmaera
X can understand, many other expressions are converted according to KeYmaera X’s specifications.

Lastly, the graphical user interface implemented with Python’s tkinter library, is composed of a
dedicated translation page and a translation history page. Fig. 1 illustrates the processing of the interval
dynamic logic statement

[{x:=[1,2]; y:=[0,1] ; {x’=x-1}}] (x>0 AND y>=0)

to the respective differential dynamic logic one, ready to be analyzed in KeYmaera X - whose correctness
is further proved using the default automatic proof tactic of KeYmaera X. The translation page also
allows the user to load a file containing an arbitrary number of formulae and save the translated result

J. Santos et al. 97

directly to ∗.kyx files. If only a single formula is translated, then the GUI prompts the user to enter a file
name and location. If, however, multiple lines of translation are detected, the user will have the option
to save all the translations in a single ∗.kyx file, or generate multiple files for each translated line. The
interface also supports a history page, where all the statements translated during the work session are
saved. This feature is useful in aiding the stepwise analysis of more complex models.

In the current version of idDL2dDL, the translator generates a fresh variable for each interval of the
formula to be translated. This naturally produces differential dynamic logic formulas with a high number
of variables. To improve the efficiency of our system, we are working on some techniques for the pre-
processing of intervals, to significantly mitigate the number of variables in the translation. For example,
the term

[1,2] + [3,4]*[5,6]

is currently translated to three separate intervals

(1<=a & a<=2)&(3<=b & b<=4)&(5<=c & c<=6) -> (a + (b * c))

using three associated variables. Future code optimizations will take advantage of the interval arithmetic
rules of [8]. For instance, addition and multiplication of intervals will be directly processed as

[a,b]+ [c,d] = [a+ c,b+d]

[a,b]∗ [c,d] = [min(P),max(P)] where P = {a∗ c,a∗d,b∗ c,b∗d},

respectively, creating simplified, semantically equivalent expressions to be processed by the translator.
This will reduce the expression complexity by significantly lowering the number of variables involved,
making integration with KeYmaera X more seamless.

An illustration

We illustrate the application of the idDL2dDL tool with the analysis of a piecewise linear model of a
biological regulatory network [3].

Biological regulatory networks are complex systems describing biological phenomena such as cell
metabolism. This kind of model describes the physical and chemical interaction between cell proteins,
mRNA, genes, and other cell organelles. When applying a deterministic model, the formalism which
is considered to accurately describe such dynamics is a system of nonlinear differential equations. Nu-
merical methods, such as simulations, are then applied to study the complex behavior and interactions
between the components of a cell. To understand the major dynamics of a biological process, these
systems of differential equations often are subjected to a preliminary study. They are firstly simplified
by proper methods, resulting in simpler models such as PieceWise Linear (PWL) models. This kind of
model preserves the major dynamics of the original one and is easier to study symbolically. They are used
to find the main dynamics of a biological system (attractors, cyclic behaviors, ...) and a detailed study
of the identified features comes afterward. A PWL model is composed of several domains containing
a system of linear differential equations which are obtained by proper simplifications of the (nonlinear)
original one (check [3] for details). An example, obtained from [5] is shown below:

J. Santos et al. 98

{
x′ =−x
y′ =−y

{
x′ =−x
y′ =−y

{
x′ =−x
y′ = 3− y

x < 2 2 < x < 4 4 < x
2 < y 2 < y 2 < y{

x′ =−x
y′ =−y

{
x′ = 5− x
y′ =−y

{
x′ = 5− x
y′ = 3− y

x < 2 2 < x < 4 4 < x
y < 2 0 < y < 2 0 < y < 2

This system is characterized by having continuous dynamics within each domain but discrete re-
configurations when we move from one domain to another. Continuous variables describe the concentra-
tion of intracellular components, such as proteins and RNA. This hybrid dynamics can be expressed by a
hybrid program of dL . To do this, we start by describing the continuous dynamics within each domain
(aggregating the ones where x < 2, for simplicity), using ≡ to define some abbreviations:

bio0 ≡ ?(x < 2);(x′ =−x,y′ =−y&(x < 2))
bio10 ≡ ?(2 < x∧ x < 4∧0 < y∧ y < 2);(x′ = 5− x,y′ =−y&(2 < x∧ x < 4∧0 < y∧ y < 2))
bio20 ≡ ?(4 < x∧0 < y∧ y < 2);(x′ = 5− x,y′ = 3− y&(4 < x∧0 < y∧ y < 2))
bio11 ≡ ?(2 < x∧ x < 4∧2 < y);(x′ =−x,y′ =−y&(2 < x∧ x < 4∧2 < y))
bio21 ≡ ?(4 < x∧2 < y);(x′ =−x,y′ = 3− y&(4 < x∧2 < y))

We can obtain the hybrid program describing the entire biological system:

bio ≡ (bio0
⋃

bio10
⋃

bio20
⋃

bio11
⋃

bio21)
∗

Then we can take advantage of the interval syntax to express biological properties like “when the
concentrations x and y are around 5.5 and 3.5, the biological system will never reach a state where x < 2”[

x := [5,6] ; y := [3,4]
][

bio
]
→ x > 2

This example was then translated and proven in KeYmaera X, using the default automatic proof
tactic, according to Fig. 2.

3 Discussion and conclusion

This paper introduces idDL2DL, a parser and translator from interval dynamic logic formulas to dL . An
application of the tool was illustrated with a case study of a biological regulatory network model, that
was translated to dL syntax and analyzed in KeyMaera X.

As aforementioned, more than a new logic, the formalism introduced here represents an adaptation
of dL driven to specific applications, namely in the synthetic biology domain. It consists of a syntax
directed to interval contexts along with adapted semantics, to inherit the soundness from dL . We notice
that interval arithmetic has already been considered in dL , through a different approach, in [1]. In that
work, for instance, a third truth-value U is considered for uncertain statements like [0,2]< [1,3]. These
kinds of propositions are evaluated as f alse in the present work, to carry a conservative approach. Con-
sequently, our semantic interpretation of continuous evolutions was adapted, maintaining the soundness
but not being so restrictive (see [4]).

J. Santos et al. 99

Figure 2: The translation of the biological regulatory network example in idDL2dDL and the respective
proof in KeYmaera X

This tool still has room for multiple improvements, being the implementation of pre-processing of
intervals, as aforementioned, one of the priorities. With this user-friendly interface, we aim to open the
tool for users without experience in formal verification of systems, such as researchers from application
areas, as is the case of synthetic biology.

References
[1] Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen & André Platzer (2018): VeriPhy: Ver-

ified Controller Executables from Verified Cyber-Physical System Models. In: Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Association for Computing
Machinery, p. 617–630.

[2] Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen & André Platzer (2018): VeriPhy: Veri-
fied Controller Executables from Verified Cyber-Physical System Models. SIGPLAN Not. 53(4), p. 617–630,
doi:10.1145/3296979.3192406. Available at https://doi.org/10.1145/3296979.3192406.

[3] Hidde De Jong (2002): Modeling and simulation of genetic regulatory systems: a literature review. Journal
of computational biology 9(1), pp. 67–103.

https://doi.org/10.1145/3296979.3192406
https://doi.org/10.1145/3296979.3192406

J. Santos et al. 100

[4] Daniel Figueiredo (2021): Introducing interval differential dynamic logic. In Hossein Hojjat & Mieke
Massink, editors: Formal Methods and Software Engineering - 22nd International Conference on Formal
Engineering Methods, Lecture Notes in Computer Science 12818, Springer, pp. 69–75.

[5] Daniel Figueiredo & Luı́s Soares Barbosa (2018): Reactive Models for Biological Regulatory Networks. In
Madalena Chaves & Manuel A. Martins, editors: Molecular Logic and Computational Synthetic Biology,
MLCSB 2018, Lecture Notes in Computer Science 11415, Springer, pp. 74–88.

[6] Daniel Figueiredo, Manuel A. Martins & Madalena Chaves (2017): Applying differential dynamic logic to
reconfigurable biological networks. Mathematical Biosciences 291, pp. 10 – 20.

[7] David Harel, Jerzy Tiuryn & Dexter Kozen (2000): Dynamic Logic. MIT Press, Cambridge, MA, USA.
[8] Ramon E. Moore (1962): Interval Arithmetic and Automatic Error Analysis in Digital Computing. Ph.D.

thesis, Stanford University.
[9] Andreas Müller, Stefan Mitsch, Wieland Schwinger & André Platzer (2018): A Component-Based Hybrid

Systems Verification and Implementation Tool in KeYmaera X (Tool Demonstration). In Roger D. Chamber-
lain, Walid Taha & Martin Törngren, editors: Cyber Physical Systems. Model-Based Design, CyPhy 2018,
Lecture Notes in Computer Science 11615, Springer, pp. 91–110.

[10] André Platzer (2018): Logical Foundations of Cyber-Physical Systems. Springer.
[11] Ricardo G. Sanfelice, David A. Copp & Pablo Nanez (2013): A toolbox for simulation of hybrid systems in

matlab/simulink: hybrid equations (HyEQ) toolbox. In Calin Belta & Franjo Ivancic, editors: Proceedings
of the 16th international conference on Hybrid systems:computation and control, HSCC 2013, ACM, pp.
101–106.

[12] Regivan H. N. Santiago, Benjamı́n R. C. Bedregal, Alexandre Madeira & Manuel A. Martins (2019):
On interval dynamic logic: Introducing quasi-action lattices. Sci. Comput. Program. 175, pp. 1–16,
doi:10.1016/j.scico.2019.01.007. Available at https://doi.org/10.1016/j.scico.2019.01.007.

https://doi.org/10.1016/j.scico.2019.01.007
https://doi.org/10.1016/j.scico.2019.01.007

© S. Urciuoli
This work is licensed under the
Creative Commons Attribution License.

A Formal Proof of the Strong Normalization Theorem for
System T in Agda

Sebastián Urciuoli*
Universidad ORT Uruguay

Montevideo, Uruguay
urciuoli@ort.edu.uy

We present a framework for the formal meta-theory of lambda calculi in first-order syntax, with
two sort of names, one to represent both free and bound variables, and the other for constants, and
using Stoughton’s multiple substitutions. On top of the framework we formalize Girard’s proof of
the Strong Normalization Theorem for both the simply-typed lambda calculus and System T. As to
the latter, we also present a simplification of the original proof. The whole development has been
machine-checked using the Agda system.

1 Introduction

In [21] a framework was presented for the formal meta-theory of the pure untyped lambda calculus in
first-order abstract syntax (FOAS) and using only one sort of names for both free and bound variables1.
Based upon Stoughton’s work on multiple substitutions [18], the authors were able to give a primitive
recursive definition of the operation of substitution which does not identify alpha-convertible terms2,
avoids variable capture, and has a homogeneous treatment in the case of abstractions. Such a defini-
tion of substitution is obtained by renaming every bound name to a sufficiently fresh one. The whole
development has been formalized using the Agda system [15].

The framework has been used since then to verify many fundamental meta-theoretic properties of
the lambda calculus including: Subject Reduction for the simply-typed lambda calculus (STLC) in [6];
The Church-Rosser Theorem for the untyped lambda calculus also in [6]; The Standardization Theorem
in [7], and; The Strong Normalization Theorem for STLC in [24], and by using F. Joachimski and
R. Matthes’ syntactical method [12]. Now in this paper we continue the same line of work, and formalize
the Strong Normalization Theorem for System T, and we also present a new and different mechanization
for STLC.

System T extends STLC by adding primitive recursive functions on natural numbers. It has its
roots in K. Gödel’s work presented in [10], and it was originally developed to study the consistency of
Peano arithmetic. The Strong Normalization Theorem states that every program (term) in some calculus
under consideration is strongly normalizing. A term is strongly normalizing if and only if its computa-
tion always halts regardless of the reduction path been taken. This result for System T is already well
known. In this development we mechanize J.-Y. Girard’s proof presented in [9], which in turn is based
on W. W. Tait’s method of computability or reducible functions [20] (henceforth we shall refer to Girard
and Tait’s method or proof interchangeably). This method defines a (logical) relation between terms

*This work is partially supported by Agencia Nacional de Investigación e Innovación (ANII), Uruguay.
1Both the previous framework and the one presented here use named variables, it bears repeating. In a contrary sense, there

are nameless approaches, e.g., de-Bruijn indices [4] or locally nameless syntax [5], which use numbers to identify the variables.
2Or without using Barendregt’s variable convention.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

S. Urciuoli 102

and types that is fitter than the Strong Normalization Theorem, and hence it enables a more powerful
induction hypothesis. Any term related to some type under such a relation is said to be reducible. Then
the method consists of two steps: first, to prove that all reducible term are strongly normalizing, and
secondly to prove that all typed terms are reducible.

Initially, the sole objective of this work was to formalize a proof of the Strong Normalization The-
orem but only for System T, and by using the framework presented in [21]. Of course, the syntax of
the pure lambda terms had to be extended to include the term-formers for the natural numbers and the
recursion operator3. For this, we based ourselves upon a standard definition of the lambda terms in which
two disjoint sort of names are used, one to represent the variables, and the other for the constants, e.g.,
see [11]. Now, instead of restricting ourselves to a specific set of constants, we shall allow any (count-
able) set. Once the syntax of the framework had been parameterised it felt natural to parameterise the
reduction schema as well, as these relations are often defined by the syntax. The work went a bit further,
and the first part of the proof was also abstracted for a class of calculi to be defined; this step consists
mainly in analysing reduction paths. To round up, hitherto the work evolved from formalizing the proof
of the Strong Normalization Theorem in System T, into also providing a general-purpose framework with
theories for substitution, alpha-conversion, reduction and reducible terms of simple types.

Now, having such a framework it was a good time to revisit the previous formalization of the Strong
Normalization Theorem for STLC presented in [24]. There, the definition of the logical relation was
based on the one in the POPLmark Challenge 2 [1], and it included the context of variables. In addition to
that, a syntactical characterization based on [12] was used to define the type of the strongly normalizing
terms. In this development, we shall use a standard definition of the logical relation which does not
contain the context, and an accessibility characterization of the strongly normalizing terms based on [2].
Furthermore, the proof for STLC is contained in the one for System T, so it serves both as a milestone in
this exposition, as well as to show the incremental nature of the whole method presented here.

The last result presented in this development is about a simplification in Girard’s proof of the Strong
Normalization Theorem for System T. More specifically, in the second part of the proof there is a lemma
whose principle of induction requires to count the occurrences of the successor operator in the normal
form of a given strongly normalizing term. This is not strictly necessary, and one can just count such
symbols directly in the term, and so avoid evaluating it.

In summary, the novel contributions in this paper are: (1) a framework for the meta-theory of lambda
calculi in FOAS with named variables and constants; (2) a complete mechanization of Girard’s proof of
The Strong Normalization Theorem for System T in Agda; (3) a new and different mechanization of Gi-
rard’s proof for STLC in Agda as well, and; (4) a simplification on the principle of induction of Girard’s
original proof of The Strong Normalization Theorem for System T. To the best of our knowledge, there
is not yet a formalization of the Strong Normalization Theorem for System T. The development has been
entirely written in Agda and it is available at: https://github.com/surciuoli/lambda-c.

The structure of this paper is the following. In the next section we introduce the new framework: its
syntax, substitution, conversion theories and logical relations (reducible terms). Some results presented
are completely new, and some others are an extension of [21, 24] to consider the additional syntax. From
Section 2.5 on, and unless the opposite is explicitly stated, all results represent new developments. In Sec-
tion 3, we formalize both STLC and Girard’s proof of the Strong Normalization Theorem. In Section 4,
we extend both the calculus and Girard’s proof to System T, and we also explain the aforementioned
simplification. In the last sections we give some overall conclusions and compare our work with related

3In this development we shal not consider booleans nor tuples as part of the syntax. Nevertheless, they can be easily defined
by the machinery presented here.

https://github.com/surciuoli/lambda-c

S. Urciuoli 103

developments. Throughout this exposition we shall use Agda code for definitions and lemmata, and a
mix of code and English for the proofs in the hope of making reading more enjoyable.

It is assumed that the reader is familiarized with dependently-typed programming languages, prefer-
ably with Agda. Alternatively, the reader might have some background on any of the variants of con-
structive (or intuitionistic) type theory, e.g., Per-Martin Löf’s formulation [13] which is the one upon
Agda is founded.

2 The Framework

Let V = v0,v1 . . . be any infinitely countable collection of names, the variables, ranged over by letters x,
y . . . and equipped with a deciding procedure for definitional equality; for concreteness, we shall define
V = N, i.e., the set of natural numbers in Agda, but it can be any other suitable type, e.g., strings. Let
C be any possibly infinite countable collection of names, the constants, and ranged over by c. The
abstract syntax of the lambda terms with constants is defined:

Definition 2.1 (Syntax).

1 module CFramework.CTerm (C : Set) where

2 ...

3 data Λ : Set where

4 k : C � Λ

5 v : V � Λ

6 ň : V � Λ � Λ

7 _·_ : Λ � Λ � Λ

In line 1 we indicate that the definition is contained in the module CFramework.CTerm, which according
to Agda’s specification must be located in the file CFramework/CTerm.agda. We also specify that the
module is parameterised by the set of constants C, which can be of any inductive type (Set). Lines 4
and 5 define the constructors for the constants and the variables respectively. In line 6 we use ň to not
interfere with Agda’s primitive λ . We shall follow the next convention unless the opposite is explicitly
stated: use λ to represent object-level abstractions in informal discussions and proofs, and use ň in code
listings. Line 7 defines the infix binary operator of function application. As usual, we shall use letters M,
N . . . to range over terms.

The module can be then instantiated with any type of constants. For example, the next declaration
derives the syntax of the pure lambda terms into the current scope:

Definition 2.2. open import CFramework.CTerm ⊥
⊥ is the inductive type without any constructor. The import statement tells Agda to load the content
of the file named after the module into the current scope, while the open statement lets one access the
definitions in it without having to qualify them. Both statements can be combined into a single one as
shown.

Whenever a name x syntactically occurs in a term M and is not bound by any abstraction, we shall
say x is free in M, and write it x *M. On the other hand, if every occurrence of x is bound by some
abstraction (or even if x does not occur at all), we shall say x is fresh in M, and write it x #M as in
nominal techniques, e.g., see [23]. Both relations are inductively defined in a standard manner, and in
[21] it was proven that both relations are opposite to each other.

It will come in handy to define both the type of predicates and binary relations on terms respectively
by: Pred = Λ � Set, and Rel = Λ � Λ � Set.

S. Urciuoli 104

2.1 Substitution

Substitution is the fundamental entity on which alpha- and beta-conversion sit. We shall base ourselves
upon the work done in [18], and first define multiple substitutions as functions from variables to terms:

Subst = V � Λ

We shall use letter σ to range over them. Later, by applying these functions to the free variables in a
given term we shall obtain the desired operation of the action of substitution (Definition 2.6), i.e., the
operation of replacing every free name x in M by its corresponding image σx.

Most substitutions appearing in properties and definitions are identity-almost-everywhere. We can
generate them by starting from the identity substitution ι , which maps every variable to itself, and ap-
plying the update operation on substitutions _≺+_ such that for any σ , x and M, σ ≺+ (x ,M) is the
substitution that maps x to M, and y to σy for every y other than x:

Definition 2.3 (Update operation).

1 _≺+_ : Subst � V Ö Λ � Subst

2 (σ ≺+ (x , M)) y with x
?
= y

3 ... | yes _ = M

4 ... | no _ = σ y

In line 1, Ö is the non-dependent product type, and in line 2, ?
= is the procedure that decides if two names

are equal, and mentioned at the start of this section.
In some places we shall need to restrict the domain of a substitution so to have a finite image or

range, therefore we introduce the type of restrictions, written R, and defined: R = Subst Ö Λ. Below
we extend freshness to restrictions:

Definition 2.4 (Freshness on restrictions).

#⇂ : V � R � Set

x #⇂ (σ , M) = (y : V) � y * M � x # σ y

In English, a name is fresh in the restriction (σ ,M) if and only if it is fresh in every image σy, for
every y *M.

Now we shall briefly discuss the mechanism in the framework used to rename the bound names in
a given term, and so avoid capturing any free variable during the action of substitution. The complete
description can be found in [21]. Let χ’ be the function that returns the first name not in a given list:

χ’ : List V � V

The algorithm is obtained by a direct consequence of the pigeonhole principle: the list of names given is
finite, therefore we can always choose a fresh name from the infinite collection V. Then we can define
the choice function χ that returns the first name not in a given restriction (σ ,M), by first concatenating
into a single list every free name that appears in the image σx for any x *M, and then selecting the first
name not in such a list by using the previous χ ′ function:

χ : R � V

χ (σ , M) = χ’ (concat (mapL (fv ◦ σ) (fv M)))

mapL applies a function to every element in a list, ◦ stands for the usual composition of functions, and
fv computes the list of free names in a given term. In [21] it was proven that χ computes a sufficiently
fresh name, according to our expectations to be addressed shortly:

Lemma 2.5. χ-lemma2 : (σ : Subst) (M : Λ) � χ (σ , M) #⇂ (σ , M)

S. Urciuoli 105

The action of a substitution σ on a term M is the operation that replaces every free name in M by its
corresponding image under σ . It is written M •σ and defined:

Definition 2.6 (Action of substitution).

• : Λ � Subst � Λ

k c • σ = k c

v x • σ = σ x

M · N • σ = (M • σ) · (N • σ)

ň x M • σ = ň y (M • σ ≺+ (x , v y)) where y = χ (σ , ň x M)

Notice that in the last equation we always rename the bound variable x to y by using the χ function.
We can show that this method avoids variable capture: for any w *M other than x it must follow
y # (σ ≺+ (x , y))w, otherwise it would mean that we have captured an undesired free occurrence of
y. Notice that if w = x then its image is y which represents an occurrence of x in the original term
λxM and therefore must be “re-bound”. So, x *M and x ̸= w, therefore w * λxM. Next, by Lemma 2.5
we have y # ⇂ (σ , λxM). Then by Definition 2.4 it follows y #σw, and so y # (σ ≺+ (x , y))w since
(σ ≺+ (x , y))w = σw by Definition 2.3.

Unary substitution is defined:

[/_] : Λ � Λ � V � Λ

M [N / x] = M • ι ≺+ (x , N)

Our definition of • has a direct consequence on the terms: when submitted to substitutions the
bound variables become “ordered”, for the lack of a better name. Consider the next example. Let
M = λv1v1. By definition M •σ = λx(v1 •σ ≺+ (v1 , x)) = λxx, where x = χ(σ , λv1v1), and for
every σ . We can see that M does not contain any free variable, therefore by definition of χ we have
that x = v0, i.e., the first name in V, and so we have that the closed term λv1v1 turned into λv0v0 even
tough no substitution actually happened. Another example a bit more sophisticated is the next one:
(λv3λv2λv0(v0v1v2v3))[v0 / v1] = λv1λv2λv3(v3v0v2v1). This collateral effect will have some impli-
cations on our definition of beta-reduction.

2.2 Alpha-conversion

Alpha-conversion is inductively defined by the syntax:

1 module CFramework.CAlpha (C : Set) where

2 open import CFramework.CTerm C

3 ...

4 data _∼α_ : Rel where

5 ∼k : {c : C} � k c ∼α k c

6 ∼v : {x : V} � v x ∼α v x

7 ∼· : {M M’ N N’ : Λ} � M ∼α M’ � N ∼α N’ � M · N ∼α M’ · N’

8 ∼ň : {M M’ : Λ} {x x’ y : V} � y # ň x M � y # ň x’ M’

9 � M [v y / x] ∼α M’ [v y / x’] � ň x M ∼α ň x’ M’

Since the syntax of the lambda terms is parameterised by a set C, every module that depends on the
syntax (all of them) will have to be parameterised by C as well. Lines 1 and 2 illustrate this point.

Arguments written between braces { and } are called implicit and they are not required to be supplied;
the type-checker will infer their values, whenever possible. Implicit arguments can be made explicit by

S. Urciuoli 106

enclosing them between braces, e.g., ∼k {c1} has type k c1 ∼α k c1. For a more detailed explana-
tion on this topic the reader may refer to [19].

The only case in the definition worth mentioning is ∼ň. There, we rename both x and x′ to a common
fresh name y. If such results are alpha-convertible, then the choice of the bound name is irrelevant, and
it should be expected to assert that both abstractions are alpha-convertible. This definition can also be
seen in nominal techniques, e.g., see [23], though there it happens to be more usual to rename only one
side of ∼α . Our symmetrical definition has some advantages over those that are not (see [21]). Also, in
[21], ∼α was proven to be an equivalence relation.

The next results are quickly extended from [21]:

Lemma 2.7. lemma•ι : ∀ {M} � M ∼α M • ι

Lemma 2.8. corollary1SubstLemma : ∀ {x y σ M N} � y #⇂ (σ , ň x M)

� (M • σ ≺+ (x , v y)) • ι ≺+ (y , N) ∼α M • σ ≺+ (x , N)

Arguments preceded by ∀ are not required to be annotated with their respective types.

2.3 Reduction

Let ▷ be any binary relation on terms and called a contraction relation. The syntactic closure of ▷ is
written⇝ and it is inductively defined:

Definition 2.9.

1 import CFramework.CTerm as CTerm

2 module CFramework.CReduction (C : Set) (_▷_ : CTerm.Rel C) where

3 open CTerm C

4 ...

5 data _⇝_ : Rel where

6 abs : ∀ {x M N} � M ⇝ N � ň x M ⇝ ň x N

7 appL : ∀ {M N P} � M ⇝ N � M · P ⇝ N · P

8 appR : ∀ {M N P} � M ⇝ N � P · M ⇝ P · N

9 redex : ∀ {M N} � M ▷ N � M ⇝ N

Line 1 imports the module CFramework.CTerm, and at the same time renames it to CTerm just for
convenience. Line 2 specifies that the module is parameterised by the contraction relation ▷; notice that
since we have neither opened the module CTerm nor specified the set of constants to be used, we wrote
CTerm.Rel C (compare with line 5). From now until the end of this section, it is assumed that both C

and ▷ are in the scope of every definition unless explicitly stated the opposite.
Any term on the left-hand side of ▷ shall be called a redex, as usual, and any term on right-hand side

a contractum. Besides, any term on the right-hand side of⇝ shall be called a reductum.
We can define beta-reduction by means of⇝ as next. Let beta-contraction be inductively defined:

Definition 2.10 (Beta-contraction).

module CFramework.CBetaContraction (C : Set) where

...

data _▷β_ : Rel where

beta : ∀ {x M N} � ň x M · N ▷β M [N / x]

Then beta-reduction for the pure lambda calculus is derived by importing the modules:

Definition 2.11 (Beta-reduction).

S. Urciuoli 107

open import CFramework.CBetaContraction ⊥
open import CFramework.CReduction ⊥ _▷β_ renaming (_⇝_ to _�β_)

Recall that in Definition 2.2 we had explained that by defining C = ⊥ we obtain the syntax of the pure
lambda terms.

The renaming done by • is sensitive to the free variables in the subject term. As a consequence, �β

is not compatible with substitution, i.e., the next lemma does not hold:

∀ {M N σ} � M �β N � M • σ �β N • σ

Consider the following example. Let M = λv1((λv0λv0v0)v0) and N = λv1λv0v0. It can be seen that
M �β N is derivable. Now, let us apply ι on each side. As to N, v1 is renamed to the first name fresh in the
restriction (ι , λv1λv0v0), i.e., to v0; we obtain N • ι = λv0λv0v0. As to M, the variable v1 is renamed
to itself, since it is the first fresh name in the corresponding restriction (renaming it to v0 would cause a
capture). So, M • ι = M, and the only reductum λv1((λv0v0)[v0 / v0]) of M equals to λv1λv0v0, which
is not N • ι .

Since we are going to need some form of the lemma of compatibility above as we shall see, we
will use the next approximation which is always possible: continuing with the earlier example, after the
reduction takes place we shall perform an alpha-conversion step from the reductum to meet N • ι , i.e.,
M • ι �β λv1λv0v0 followed by λv1λv0v0 ∼α N • ι .

So, let r be any binary relation on terms, either a contraction relation or a reduction. We shall say
r is alpha-compatible with substitution, and write it Compat• r, if and only if, for every directed pair of
terms M and N related under r both there must exist some P such that M •σ and P are also related, and
P ∼α N •σ . Formally:

Definition 2.12 (Alpha-compatibility with substitution).
Compat• r = ∀ {M N σ} � r M N � Σ[P ∈ Λ](r (M • σ) P Ö P ∼α N • σ)

In Agda, the dependent product type can be written Σ[a ∈ A] B, where a is some (meta-)variable of
type A, and B is some type which might depend upon a.

Similarly, we shall say r is alpha-commutative and define it:

Definition 2.13 (Alpha-commutativity).
Comm∼α r = ∀ {M N P} � M ∼α N � r N P � Σ[Q ∈ Λ](r M Q Ö Q ∼α P)

We shall restrict this development to contraction relations that preserve freshness, i.e., that do not
introduce any free name in any contractum:

Definition 2.14. Preserves# r = ∀ {x M N} � r M N � x # M � x # N

Then we have that, if ▷ preserves freshness, or it is compatible with substitution, or it commutes with
alpha-conversion, then its syntactic closure has the corresponding properties as well:

Lemma 2.15.
preser⇝# : Preserves# _▷_ � Preserves# (_⇝_ _▷_)
compat⇝• : Preserves# _▷_ � Compat• _▷_ � Compat• (_⇝_ _▷_)
commut⇝α : Preserves# _▷_ � Compat• _▷_ � Comm∼α _▷_ � Comm∼α (_⇝_ _▷_)

Their proofs are extended from [21, 24]. Notice the cascade effect on the lemmata: each of them has all
the arguments of the one above. This happens naturally since each lemma relies on the previous one.

Finally, we have that beta-contraction is alpha-commutative, along with two other results (their proofs
are extended from [24]):

Lemma 2.16. Preserves# _▷β_ Ö Compat• _▷β_ Ö Comm∼α _▷β_

S. Urciuoli 108

2.4 Strongly normalizing terms

A term is strongly normalizing if and only if every reduction path starting from it eventually halts. We
shall use their accessible characterization (originally presented in [2]). For any given computation rela-
tion⇝ we define sn:

Definition 2.17 (Strongly normalizing terms).

1 sn : Λ � Set

2 sn = Acc (dual _⇝_)

Acc is the type of the accessible elements by some order <, i.e., the set of elements a such that there is
no infinite sequence . . . < a′ < a. It is defined in Agda’s standard library [22]. dual is the function that
returns the type of the inverse of every binary relation on terms. We use the dual of ⇝ instead of the
direct because Acc expects an order that descends to its left-hand side, so to speak, which is not the case
for⇝. Line 2 can be read as: sn is the set of terms M such that M⇝M′⇝ . . . is always finite. Below
is the definition of Acc to support this paragraph:

data Acc {a b} {A : Set a} (_<_ : Rel A b) (x : A) : Set (a ⊔ b) where

acc : (∀ y � y < x � Acc _<_ y) � Acc _<_ x

Note that Rel above is the type of binary relations between any two types, and it is defined in the standard
library as well.

The next result is adapted from [24] and follows easily by induction:

Lemma 2.18. inversionSnApp : ∀ {M N} � sn (M · N) � sn M Ö sn N

sn is closed under alpha-conversion, as long as the supporting relation ⇝ commutes with alpha-
conversion. The corresponding proof presented here is an adaptation of [24]:

Lemma 2.19. closureSn∼α : Comm∼α _⇝_ � ∀ {M N} � sn M � M ∼α N � sn N

Proof. By induction on the derivation of snM. To derive snN we need to prove snP for any N ⇝ P.
By Definition 2.13 there exists some Q such that M⇝ Q and Q ∼α P. By Definition 2.17, snQ holds,
i.e., Q is accessible, and snQ is a proper component of the derivation of snP4. Then, we can use the
induction hypothesis on snQ together with Q ∼α P and obtain snP.

Exceptionally we show the code of the proof above because it is very compact, and to reinforce the
understanding of the structural principle of induction of sn:

closureSn∼α comm {M} {N} (acc i) M∼N =

acc λ P P�N � let Q , M�Q , Q∼P = comm M∼N P�N

in closureSn∼α comm (i Q M�Q) Q∼P
The λ occurrence denotes Agda’s entity for meta-level lambda terms. i Q M�Q is of type snQ, and it is
a proper component of acc i which is of type snM. P�N is of type (dual _⇝_) P N which in turn
equals to P ⇝ N. For the same reason M�Q is of type (dual _⇝_) Q M.

4Put in other words, every reduction beginning in Q is at least one step shorter than every other reduction beginning in M.

S. Urciuoli 109

2.5 Reducibile terms

Girard’s proof of the Strong Normalization Theorem defines a relation between terms and types. A term
that is related to some type is said to be reducible. The proof is carried out in two steps: first, it is proven
that every reducible term is strongly normalizing, and secondly that every typed term is reducible. In this
section we shall define the logical relation of reducible terms, and after that we shall prove some of their
properties, including the first step in Girard’s proof (CR1 of Lemma 2.24).

Both in STLC and System T (object-level) types are simple, so regarding this development they will
be enough for our definition of the logical relation. We define them by:
data Type : Set where

τ : Type

⇒ : Type � Type � Type

Then, the relation of reducible terms or logical relation is defined by recursion on the types:
Definition 2.20 (Reducible terms).
Red : Type � Λ � Set

Red τ M = sn M

Red (α ⇒ β) M = ∀ {N} � Red α N � Red β (M · N)

Red is also closed under alpha-conversion:
Lemma 2.21 (Closure of Red under ∼α).
closureRed∼α : Comm∼α _⇝_ � ∀ {α M N} � Red α M � M ∼α N � Red α N

Proof. By induction on the type α , and by using Lemma 2.19.

Next we have neutral terms. We shall use a different characterization than the one given in [9], and
define them as the set of terms that contains all variables, in addition to all terms which when iteratively
applied to any sequence of terms, the result is never a redex, i.e., if M is neutral then MN0N1 . . .Nn

is not a redex for any n > 0. Since we are defining a general-purpose framework, we need to find an
abstract characterization wide enough to hold for the targeted calculi. The next definition was found to
be appropriate:
Definition 2.22 (Neutral terms).

1 record ConditionsNe (Ne : Pred) : Set where

2 field cond1 : ∀ {x} � Ne (v x)

3 cond2 : ∀ {M} � Ne M � ∀ {N} � Ne (M · N)

4 cond3 : ∀ {M} � Ne M � ∀ {N P} � ¬((M · N) ▷ P)

In line 1, the parameter on the left-hand side of the last occurrence of : indicates that Ne is an argument
constant to every field or constructor (similar to what happens with modules). In line 4, ¬ A is the
negation of any proposition (or type) A, and it is defined by: ¬ A = A � ⊥. Finally, NeM shall be read
as: M is neutral.

We have packed the conditions that identify any predicate as a possible definiens for the set of neutral
terms into a single record just for a matter of taste. In Agda, a record is a n-tuple with tags or labels
for accessing each element. Any object of type ConditionsNe Ne will then be a proof of that such a
predicate Ne is a good candidate to represent the type of neutral terms, i.e., Nex holds for every x (cond1),
and for every NeM it follows both that Ne(MN) (cond2), and that MN is not a redex (cond3), which
combined these last two statements ensure that no application MN0N1 . . . is ever a redex for any NeM.

Finally, we shall need to require that no variable be a redex in ▷5:
5Actually, we only need one variable to not be a redex (see the proof of CR1 in Lemma 2.24, when α is functional).

S. Urciuoli 110

Definition 2.23 (Condition of the contraction relation).

record Conditions▷ : Set where

field cond4 : ∀ {x M} � ¬(v x ▷ M)

We used a record just to maintain coherence with previous conditions.

As to the main result in this section, we have the next properties about reducible terms, where CR1

corresponds to the first part of Girard’s proof:

Lemma 2.24 (Properties of reducible terms).

module RedProperties (Ne : Pred) (p : ConditionsNe Ne) (q : Conditions▷) where

...

CR1 : ∀ {α M} � Red α M � sn M

CR2 : ∀ {α M N} � Red α M � M ⇝ N � Red α N

CR3 : ∀ {α M} � Ne M � (∀ {N} � M ⇝ N � Red α N) � Red α M

Proof. By mutual induction on the type α:

• Case α = τ:

CR1 By Definition 2.20, Redτ M = snM, so CR1 is a tautology.
CR2 Immediate by Definition 2.17.
CR3 Analogous to CR2.

• Case α = β ⇒ γ:

CR1 By cond1 of Definition 2.22 we have Nev0. By cond4 of Definition 2.23 together with
Definition 2.9 we have that v0⇝ N is absurd for any N, therefore the second hypothesis of
CR3 follows by vacuity, and so we can use the main induction hypothesis CR3 and obtain
Redβ v0. Now, by Definition 2.20 on Red(β ⇒ γ)M, we obtain Redγ (Mv0), and by the
induction hypothesis sn(Mv0). Finally, by Lemma 2.18 we get snM.

CR2 According to Definition 2.20, to prove the thesis Red(β ⇒ γ)N we have to prove Redγ (NP)
for any Redβ P. By hypothesis we know Redγ (MP), and by compatibility of ⇝ with the
syntax together with the hypothesis M ⇝ N we have MP⇝ NP, and so we can use the
induction hypothesis and obtain Redγ (NP) as desired.

CR3 Let Redβ P. To derive our desired result Redγ (MP) and by using the induction hypothesis,
we need to feed it with the required hypotheses or arguments: (1) Ne(MP), and (2) that for
every N′, MP⇝ N′ implies Redγ N′. (1) follows by cond2 of Definition 2.22. As to (2), first
of all, by the main induction hypothesis CR1 we get snP. Now, we shall continue by a nested
induction on the derivation of snP6. Let us analyse every possible derivation of MP⇝ N′.

– Case redex: MP▷N′ is absurd by Definition 2.23.
– Case appL: If MP⇝M′N′′ follows from M⇝M′ with N′ = M′N′′ then by (2) we get
Red(β ⇒ γ)M′, and so by Definition 2.20, Redγ (M′N′′).

– Case appR: If MP⇝MP′ follows from P⇝ P′ with N′ = MP′, then by Definition 2.17
we obtain snP′, which is a proper component of snP, and so we can continue by induc-
tion on snP′.

6In the code, it means to define an auxiliary function in the current scope.

S. Urciuoli 111

Next we have some general definitions regarding the assignment of types. First, there are contexts
(of variable declarations). They are defined as list of pairs, possibly with duplicates:

Definition 2.25. Cxt = List (V Ö Type)

Then there is the relation of membership between variables and contexts. We shall write x ∈ Γ and say
that x is the first variable in Γ, searched from left to right. Below is the inductive definition:

data _∈_ : V � Cxt � Set where

here : ∀ {x α Γ} � x ∈ Γ ⋓ x : α

there : ∀ {x y α Γ} � x ̸≡ y � x ∈ Γ � x ∈ Γ ⋓ y : α

Γ ⋓ x : α is syntax-sugar for (x , α) :: Γ. Finally, there is a lookup function on contexts such
that it returns the type of the first variable (provided it is declared), searched in the same fashion, and
defined:

1 _<_> : ∀ {x} � (Γ : Cxt) � x ∈ Γ � Type

2 [] < () >

3 ((k , d) :: xs) < here > = d

4 ((k , d) :: xs) < there _ p > = xs < p >

In the second line, () is an absurd pattern, and it tells Agda to check that there is no possible way of
having an object of type x ∈ [], for any x.

To end this section, we present reducible substitutions. We shall say a substitution is reducible under
some context Γ if and only if it maps every variable in Γ to a reducible term of the same type:

Definition 2.26. RedSubst σ Γ = ∀ x � (k : x ∈ Γ) � Red (Γ < k >) (σ x)

The next results follow immediately by definition:

Lemma 2.27. Red-ι : ∀ {Γ} � RedSubst ι Γ

Lemma 2.28.

Red-upd : RedSubst σ Γ � ∀ x � Red α N � RedSubst (σ ≺+ (x , N)) (Γ ⋓ x : α)

3 STLC

The syntax and theories of substitution, alpha- and beta-reduction for STLC are obtained by instantiating
the framework with:

module STLC where

open import CFramework.CTerm ⊥
...

open import CFramework.CReduction ⊥ _▷β_ as Reduction renaming (_⇝_ to _�β_)

Next is the assignment of types in STLC:

data _⊢_:_ (Γ : Cxt) : Λ � Type � Set where

⊢var : ∀ {x} � (k : x ∈ Γ) � Γ ⊢ v x : Γ < k >

⊢abs : ∀ {x M α β} � Γ ⋓ x : α ⊢ M : β � Γ ⊢ ň x M : α ⇒ β

⊢app : ∀ {M N α β} � Γ ⊢ M : α ⇒ β � Γ ⊢ N : α � Γ ⊢ M · N : β

S. Urciuoli 112

3.1 The Strong Normalization Theorem in STLC

Following Girard’s proof, first we need to prove that every reducible term is sn. We shall use CR1 of
Lemma 2.24 for that matter. So, to begin with, we need to give a proper definition of the neutral terms in
STLC. Let them be inductively defined by:

data Neβ : Pred where

var : ∀ {x} � Neβ (v x)

app : ∀ {M N} � Neβ (M · N)

One should convince oneself that Neβ respects conditions in Definition 2.22:

Lemma 3.1. conditionsNeβ : Conditions Neβ

In addition to that, it is also easy to verify that ▷β (Definition 2.10) does not reduce variables:

Lemma 3.2. conditions▷β : Conditions▷ _▷β_

Therefore we inherit Lemma 2.24 for STLC by:

open import CFramework.CReducibility ⊥ _▷β_ as Reducibility

open Reducibility.RedProperties Neβ conditionsNeβ conditions▷β

Now we have to prove that every typed terms is reducible; we shall refer to this as the main lemma.
To present the proof, we are going to need some preparatory results. First, by Lemma 2.16 together with
Lemma 2.15 we have that �β is both alpha-compatible with substitution, and alpha-commutative:

Lemma 3.3. Compat• _�β_ Ö Comm∼α _�β_

Secondly, since the main lemma proceeds by induction on the derivation of the typing judgement, and
the case of abstractions is quite complex, it turns out to be convenient to have a separate lemma for this
case:

Lemma 3.4. lemmaAbs : ∀ {x M N α β} � sn M � sn N

� (∀ {P} � Red α P � Red β (M [P / x])) � Red α N � Red β (ň x M · N)

Proof. By induction on the derivations of snM and snN. We shall refer to hypotheses snM, snN,
∀{P} � Redα P � Redβ (M[P / x]) and Redα N as (1) through (4) respectively. So, to use CR3 of
Lemma 2.24 to prove that the neutral term (λxM)N is reducible of type β (the thesis of this lemma) we
need to show that every reductum is reducible (the second explicit hypothesis of the mentioned lemma).
So, let us analyze every possible case:

• Case redex: If (λxM)N �β M[N / x] then we can quickly derive that M[N / x] is reducible
from (3) and (4).

• Case appL: If (λxM)N �β (λxM′)N follows from M �β M′ then, to use the induction hypoth-
esis on snM′, we need to provide the requested hypotheses (1) through (4) correctly instanti-
ated. (1) follows by Definition 2.17, and (2) and (4) are direct. As to (3), we need to prove that
Redβ (M′[P / x]) holds for any Redα P. By Lemma 3.3 we know that there exists some R such
that M[P / x] �β R and R ∼α M′[P / x]. By hypothesis (3) it follows Redβ (M[P / x]), so
by CR2 of Lemma 2.24 we obtain Redβ R. Finally, we can use Lemma 3.3 together with inherited
Lemma 2.21 to derive Redβ (M′[P / x]).

• Case appR: If (λxM)N �β (λxM)N′ follows from N �β N′ then, first, by Definition 2.17 we have
snN′, and secondly by CR2 of Lemma 2.24 we obtain Redα N′, therefore we can use the induction
hypothesis on snN′ to derive Redβ ((λxM)N′).

S. Urciuoli 113

So, to use the previous result in the main lemma, we are going to need a stronger induction hypothesis
in order to derive the third hypothesis, namely ∀{P} � Redα P � Redβ (M[P / x]). We shall see that
by stating the main lemma as next we can easily derive it:

Lemma 3.5. main : ∀ {α M σ Γ} � Γ ⊢ M : α � RedSubst σ Γ � Red α (M • σ)

Proof. By induction on the typing derivation:

• Case ⊢var: If M is a variable, then the thesis follows directly from Definition 2.26.

• Case ⊢abs: If M = λxM′ with type α ⇒ β , then we need to show Redβ (((λxM′) •σ)N) for
any Redα N. First of all, λxM′ •σ = λy(M′ • (σ ≺+ (x , y))) for some fresh name y. Now, to
use Lemma 3.4 we need to derive its hypothesis: (1) sn(M′ •σ ≺+ (x , y)); (2) snN; (3) for ev-
ery Redα P, Redβ ((M′ •σ ≺+ (x , y))[P / y]), and; (4) Redα N. As to (1), by Lemma 2.28 we
have RedSubst(Γ⋓x : α)(σ ≺+ (x , y)), thus by induction hypothesis Redβ (M′ •σ ≺+ (x , y)),
and so by CR1 of Lemma 2.24 we obtain the desired result. (2) follows immediately by CR1. As
to (3), first by Lemma 2.8 we have (M′ •σ ≺+ (x , y))[P / y] ∼α M′ • σ ≺+ (x ,P). Next,
by Lemma 2.28, RedSubst(Γ⋓ x : α)(σ ≺+ (x ,P)), so by the induction hypothesis we have
Redβ (M′(σ ,P/x)). And finally, by Lemma 3.3 together with Lemma 2.21 we can derive the
desired result. (4) is an assumption already made. At last, having (1) through (4) we can use
Lemma 3.4 and derive Red(α ⇒ β)((λxM′) •σ), and so obtain Redβ (((λxM′) •σ)N) by Defi-
nition 2.20, as desired.

• Case ⊢app: Immediate by the induction hypothesis.

Without further ado, we have the Strong Normalization Theorem:

Theorem 3.6. strongNormalization : ∀ {Γ M α} � Γ ⊢ M : α � sn M

Proof. By Lemmas 2.27 and 3.5 we have Redα (M • ι), and so by CR1 of Lemma 2.24, sn(M • ι). Then,
by Lemma 2.7, M • ι ∼α M, and thus by Lemma 3.3 together with Lemma 2.19 it follows snM.

4 System T

Let C and ▷T be inductively defined:

data C : Set where

O : C; S : C; Rec : C

data _▷T_ : Rel where

beta : ∀ {M N} � M ▷β N � M ▷T N

recO : ∀ {G H} � k Rec · G · H · k O ▷T G

recS : ∀ {G H N} � k Rec · G · H · (k S · N) ▷T H · N · (k Rec · G · H · N)

The syntax and theories of substitution, alpha- and beta-conversion for System T are then obtained by
instantiating the framework with both C and ▷T, and similarly to STLC as shown in the previous section.

The assignment of types in System T is extended from STLC and defined:

S. Urciuoli 114

data _⊢_:_ (Γ : Cxt) : Λ � Type � Set where

⊢zro : Γ ⊢ k O : nat

⊢suc : Γ ⊢ k S : nat ⇒ nat

⊢rec : ∀ {α} � Γ ⊢ k Rec : α ⇒ (nat ⇒ α ⇒ α) ⇒ nat ⇒ α

⊢var : ∀ {x} � (k : x ∈ Γ) � Γ ⊢ v x : Γ < k >

⊢abs : ∀ {x M α β} � Γ ⋓ x : α ⊢ M : β � Γ ⊢ ň x M : α ⇒ β

⊢app : ∀ {M N α β} � Γ ⊢ M : α ⇒ β � Γ ⊢ N : α � Γ ⊢ M · N : β

nat is syntax-sugar for τ .

4.1 The Strong Normalization Theorem in System T

The proof of the Strong Normalization Theorem in System T follows the same structure as the one of
STLC: first, we need to find an appropriate definition of the neutral terms so to derive the first step
in Girard’s method, i.e., CR1, and then, we need to have a (main) lemma and reason by induction on
the syntax (the typing judgment) to derive reducibiliy. Finally, the Strong Normalization Theorem in
System T follows exactly as Theorem 3.6.

So, to start with, let the set of the neutral terms in System T be defined:

data NeT : Pred where

var : ∀ {x} � NeT (v x)

zro : NeT (k O)

suc : NeT (k S)

app : ∀ {M} � NeT M � ∀ {N} � NeT (M · N)

beta : ∀ {x M N} � NeT (ň x M · N)

neRec : ∀ {G H N} � NeT (k Rec · G · H · N)

One can easily convince himself that this definition also respects conditions in Definition 2.22. In ad-
dition to that, ▷T satisfies conditions in Definition 2.23, therefore we inherit Lemma 2.24 in System T,
particularly CR1.

As to the second part, i.e., the main lemma, we have to consider only the additional syntax; the
remaining cases follow identically. O and S are reducible by CR3 (similar to v0 in the proof of CR1).
As to Rec, we shall follow the same strategy as in STLC and have a separate lemma, namely the
recursion lemma. In the next section we cover this last case, while at the same time we present the
announced simplification.

4.2 Recursion

In this section, first we introduce the principle of induction used in the proof for the recursion lemma
presented in [9] and from our perspective, then we explain our simplification, and finally we formalize
the proof.

We must prove that the neutral term RecGH N is reducible, for any reducible terms G, H and N.
First, we shall strengthen our induction hypothesis: by CR1 we know that G, H and N are sn, so we
can assume that these derivations are given as additional hypotheses. Also, we need some preparatory
definitions: let ν(M), ℓ(M) and nf(M) be respectively the length of the longest reduction starting in
M, the count of S symbols in M, and the normal form of the (strongly normalizing) term M. Now,
to prove our thesis we shall proceed by induction on the strict component-wise order (henceforth, just

S. Urciuoli 115

component-wise order) on the 4-tuple7 (snG,snH,ν(N), ℓ(nf(N))), where in snG and snH we shall
use the structural order of sn, in ν(N) the complete order on natural numbers8, and in ℓ(nf(N)) the
structural order on natural numbers. As we did in Lemma 3.4, we are going to use CR3 of Lemma 2.24
for the matter, and so we have to prove that every reductum of RecGH N is reducible. There are five
cases: (1) RecG′ H N with G �β G′, (2) RecGH ′ N with H �β H ′, (3) RecGH N′ with N �β N′, (4) G
with N = O, and (5) HN′(RecGH N′) with N = SN′. As to (1) and (2), we can directly use the induction
hypothesis on snG′ and snH ′. As to (3), we can suspect that ν(N′) < ν(N), and so we can proceed
likewise. (4) is a hypothesis. As to (5), it is immediate that ℓ(nf(N′))< ℓ(nf(SN′)).

We can simplify the induction schema used above by dispensing with nf, and instead proceed by
induction on the component-wise order of the 3-tuple (snG,snH,(ν(N), ℓ(N))), where in snG and snH
we use the same order as above, but in (ν(N), ℓ(N)) we use the lexicographical order on tuples9. As to
cases (1), (2) and (4), the induction is the same. As to (3), we have already assumed that ν(N′)< ν(N),
so we can use the (lexicographical-based) induction hypothesis on (ν(N′), ℓ(N′)), and disregard if ℓ(N′)
goes off. Finally, as to (5), on the one hand, it is immediate that ℓ(N′)< ℓ(SN′). On the other hand, we
can also guess that ν(N′) = ν(SN′), therefore we can proceed by induction on (ν(SN′), ℓ(N′)).

Now, to formalize the recursion lemma based on the last induction schema, first we need to give
some definitions, as usual. Next is the function that computes the list of reductio for any given term M,
while at the same time proves it is sound, i.e., every element of the list is actually a reductum of M. We
present it in two separate parts, first redAux, which as the name suggest, is an auxiliary function, and
then reductio which is the complete and desired operation (we omit some code):

1 redAux : (M : Term) � List (Σ[N ∈ Term](M �β N))

2 redAux (ň x M · N) = [(M [N / x] , ...)]

3 redAux (k Rec · G · H · k O) = [(G , ...)]

4 redAux (k Rec · G · H · (k S · N)) = [(H · N · (k Rec · G · H · N) , ...)]

5 redAux _ = []

6

7 reductio : (M : Term) � List (Σ[N ∈ Term](M �β N))

8 reductio (k _) = []

9 reductio (v _) = []

10 reductio (ň x M) = mapL (mapΣ (ň x) abs) (reductio M)

11 reductio (M · N) = redAux (M · N) ++ ... (reductio M) ++ ... (reductio N)

mapΣ is the function that given two other functions and a tuple, it applies each function to one of the
components of the tuple. The purpose of the auxiliary function is to put together the cases of redexes,
and apart from the reductio definition, so to have a cleaner treatment in the case of applications in the
latter (see line 11).

The algorithm is also complete, i.e., it outputs all reductio of M, and its proof follows by induction
on the derivation of any given reduction:

Lemma 4.1. lemmaReductio : ∀ {M N} (r : M �β N) � (N , r) ∈’ (reductio M)

∈’ is the standard relation of membership in lists.
We can use the list returned by reductio to develop an algorithm that computes our first ordinal

ν , i.e., the length of the longest reduction beginning in some strongly normalizing term M given, by

7The component-wise order on a n-tuple is given by: ai <i b ⇒ (a0 . . . ,ai . . . ,an)<i (a0 . . . ,b . . . ,an) for any i, n and b.
8The complete order on natural numbers is the same as transitive closure of the structural order on them.
9The lexicographical order on a tuple is given by: a < b ⇒ (a,c)< (b,d) and b < c ⇒ (a,b)< (a,c) for any a, b, c, d.

S. Urciuoli 116

recursively computing such a result for every reductum of M, then selecting the longest one, and finally
adding one for the first step. Notice that the length of longest path and the height of the derivation tree
of snM are synonyms, so we shall use them interchangeably:

ν : ∀ {M} � sn M � N
ν {M} (acc i) = 1 + max (mapL (λ{(N , M�N) � ν (i N M�N)}) (reductio M))

max is the function that returns the maximum element in a given list. The above definition is standard for
computing the height of any inductive type, except for that sn has an infinitary premise. This means that
we need to enumerate all possible applications to obtain every possible sub-tree. Since every term M has
a finite number of redexes, so there can only be finitely many applications of the premise, i.e., reductions
M �β N for some N, all of them being enumerated by the reductio algorithm, as proven in Lemma 4.1.

The height of snN equals to the height of sn(SN), as guessed at the start of this section. This is
immediate since the prefix S does not add any redex to any reduction path:

Lemma 4.2. lemmaSν : ∀ {M} (p : sn M) (q : sn (k S · M)) � ν p ≡ ν q

Proof. By induction on either the derivation of p or q.

Next we have that the height of snM decreases after a computation step is consumed, or in other
words, every (immediate) sub-tree of snM is strictly smaller. The name of the lemma is lemmaStepν ,
and its proof follows by properties of lists, and by using Lemma 4.1:

Lemma 4.3. ∀ {M N i} (p : sn M) � p ≡ acc i � (r : M �β N) � ν (i N r) < ν p

Notice the apparently clumsy way it was stated. i N r is a proof of snN. To require such a proof
as an argument would be inefficient since we already know snM and M �β N. Instead, by asking for
the argument p ≡ acc i we can obtain the infinitary premise i of snM (this can be easily supplied
afterwards with the constructor of ≡, refl), and apply it to N and r, and so obtain the proof of snN.

Next is our second ordinal:

Definition 4.4. ℓ : Term � N is the function that counts the number of occurrences of the S symbol in
any given term, and it is defined by recursion on the term.

Finally, we have the recursion lemma. Let <-lex be the lexicographical order on tuples of N. Then
Acc _<-lex_ is the type of pairs that are accessible by such an order. It is easy to prove that for any
proof p of snN for some N, it follows (ν(p), ℓ(N)) is in the accessible part of the lexicographical order,
hence such an argument can always be derived. Then:

lemmaRec : ∀ {α G H N} � sn G � sn H � (p : sn N) � Acc _<-lex_ (ν p , ℓ N)

� Red α G � Red (nat ⇒ α ⇒ α) H � Red α (k Rec · G · H · N)

Proof. By induction on the derivations of snG and snH, and on the lexicographical order of the tuple
(ν(p), ℓ(N))10. As already said several times by now, we shall resort to CR3 of Lemma 2.24 for the
matter. So let us fast-forward til the reductum analysis:

• Case recO: If RecGH O �β G then the result is a hypothesis.

10In Agda every function is structural recursive, and each one of them will successfully pass the type-checking phase if, put
it simply, there exists a subset of the arguments such that for every recursive call in any of its definiens, at least one of the
arguments is structurally smaller whilst the others remains the same. This is equivalent to saying that the induction is based on
the component-wise order of any arrangement of such a subset, i.e., on a tuple made up of such arguments.

S. Urciuoli 117

• Case recS: If RecGH (SN) �β HN(RecGH N) then we can apply the induction hypothesis, since
we know both ν(N) = ν(SN) by Lemma 4.2, and ℓ(N) < ℓ(SN) immediately by definition of ℓ,
and so we obtain Redα (RecGH N). Finally, by Definition 2.20 on Red(nat ⇒ α ⇒ α)H we
obtain Redα (HN(RecGH N)).

• Case appR: If RecGH N �β RecGH N′ follows from N �β N′, then by Lemma 4.3 we know that
ν(N′)< ν(N), and so we can use the induction hypothesis to derive the desired result.

• Case appL: If the reduction follows from one either in G or H, then we can proceed directly by the
induction hypothesis.

5 Related work

In this development we have encoded the lambda terms using first-order abstract syntax (FOAS). In
contrast, other approaches use higher-order abstract syntax (HOAS) [16], i.e., binders and variables are
encoded using the same ones in the host language. These systems have the advantage that substitution
is already defined. The first such mechanization of the theorem for STLC was presented in [8], and by
using the ATS/LF logical framework [25]. However, the theory of (terminating) recursive functions using
FOAS is more established, and there are plenty of programming languages that support them. This makes
fairly easy to translate this mechanization to other system supporting standard principles of induction.

A second difference with existing work is that in this paper we have used named variables instead
of de-Bruijn indices [4], e.g., in our framework the identity function can be written λxx for any x, while
in the latter λ0. Clearly, the former is visually more appealing, making it better suited for textbooks,
needless to say it is the actual way programs are written. The main disadvantage is that we do not identify
alpha-convertible terms, e.g., λv0v0 and λv1v1 are different objects, whereas by using indices there is
only one possible representative for each class of alpha-convertible terms, and so it is not necessary
to deal with alpha-conversion at all. To mention some renowned mechanizations of the theorem for
STLC using this encoding: in [2] the author uses the LEGO system [17], and; in [1] two different
mechanizations are presented, one in Agda and one in Coq [14].

As to System T, to the best of our knowledge there is not yet a formalization of the Strong Normal-
ization Theorem.

6 Conclusions

We have presented a framework for the meta-theory of lambda calculi in FOAS with constants, that does
not identify alpha-convertible terms, and it is parameterised by a reduction schema. On top of it, we have
built a complete mechanization of Girard’s proof of the Strong Normalization Theorem for System T.
In addition, we were able to include a simplification on the principle of induction of the original proof.
Finally, we gave a different mechanization of the same method but for STLC, and by using the new
framework.

In terms of size, the framework is ∼1800LOC long, counting import statements and the like, and of
which ∼90LOC belong to the first part of Girard’s proof, namely the reducibility properties. As to the
mechanizations of the proofs for STLC and System T, they are about 80 and 250LOC long repectively.

Shortly after [24], a refactorization of Joachimski and Matthes’ syntactical mechanization for the
Strong Normalization Theorem in STLC was made, resulting in a cleaner ∼400LOC. Clearly, the for-

S. Urciuoli 118

malization presented in here is sharper; about a half if one takes the reducibility properties into consider-
ation. One of the main differences is that the closure of the accessibility definition with alpha-conversion
required just 3LOC, while its syntactical counterpart ∼100LOC11. Of course, this evaluation is subject
to the emergence of an even cleaner version.

References
[1] Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto Momigliano, Steven Schäfer &

Kathrin Stark (2019): POPLMark reloaded: Mechanizing proofs by logical relations. Journal of Functional
Programming 29, doi:10.1017/S0956796819000170.

[2] Thorsten Altenkirch (1993): Constructions, Inductive Types and Strong Normalization. Ph.D. thesis, Univer-
sity of Edinburgh. Available at https://www.cs.nott.ac.uk/~psztxa/publ/phd93.pdf.

[3] Hendrik P. Barendregt (1985): The lambda calculus - its syntax and semantics. Studies in logic and the
foundations of mathematics 103, North-Holland.

[4] Nicolaas Govert de Bruijn (1972): Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae 75(5),
pp. 381–392, doi:10.1016/1385-7258(72)90034-0.

[5] Arthur Charguéraud (2012): The Locally Nameless Representation. Journal of Automated Reasoning 49(3),
pp. 363–408, doi:10.1007/s10817-011-9225-2.

[6] Ernesto Copello, Nora Szasz & Álvaro Tasistro (2017): Formal metatheory of the Lambda calculus using
Stoughton’s substitution. Theoretical Computer Science 685, pp. 65–82, doi:10.1016/j.tcs.2016.08.025.

[7] Martı́n Copes, Nora Szasz & Álvaro Tasistro (2018): Formalization in Constructive Type Theory of
the Standardization Theorem for the Lambda Calculus using Multiple Substitution. In Frédéric Blan-
qui & Giselle Reis, editors: Proc. LFMTP ’18, EPTCS 274, Open Publishing Association, p. 27–41,
doi:10.4204/eptcs.274.3.

[8] Kevin Donnelly & Hongwei Xi (2007): A Formalization of Strong Normalization for Simply-Typed Lambda-
Calculus and System F. In Alberto Momigliano & Brigitte Pientka, editors: Proc. LFMTP ’06, ENTCS 174,
Elsevier, pp. 109–125, doi:10.1016/j.entcs.2007.01.021.

[9] Jean-Yves Girard, Paul Taylor & Yves Lafont (1989): Proofs and Types. Cambridge University Press.
[10] V. Kurt Gödel (1958): Über Eine Bisher Noch Nicht Benützte Erweiterung des Finiten Standpunktes. Dialec-

tica 12(4), pp. 280–287, doi:10.1111/j.1746-8361.1958.tb01464.x.
[11] J. Roger Hindley & Jonathan P. Seldin (2008): Lambda-Calculus and Combinators: An Introduction, second

edition. Cambridge University Press.
[12] Felix Joachimski & Ralph Matthes (2003): Short proofs of normalization for the simply-typed λ -calculus,

permutative conversions and Gödel’s T. Archive for Mathematical Logic 42, pp. 59–87, doi:10.1007/s00153-
002-0156-9.

[13] Per Martin-Löf & Giovanni Sambin (1984): Intuitionistic type theory. Studies in proof theory, Bibliopolis.
[14] The Coq development team (2004): The Coq proof assistant reference manual. Available at http://coq.

inria.fr.
[15] Ulf Norell (2007): Towards a practical programming language based on dependent type theory. Ph.D. thesis,

Chalmers University of Technology.
[16] Frank Pfenning & Conal Elliott (1988): Higher-Order Abstract Syntax. ACM SIGPLAN Notices 23(7), p.

199–208, doi:10.1145/53990.54010.
[17] Robert Pollack (1994): The Theory of LEGO. Ph.D. thesis, University of Edinburgh.

11These figures do not include neither the commutativity nor the compatibility properties in any of both parties.

https://doi.org/10.1017/S0956796819000170
https://www.cs.nott.ac.uk/~psztxa/publ/phd93.pdf
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1016/j.tcs.2016.08.025
https://doi.org/10.4204/eptcs.274.3
https://doi.org/10.1016/j.entcs.2007.01.021
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1007/s00153-002-0156-9
https://doi.org/10.1007/s00153-002-0156-9
http://coq.inria.fr
http://coq.inria.fr
https://doi.org/10.1145/53990.54010

S. Urciuoli 119

[18] Allen Stoughton (1988): Substitution revisited. Theoretical Computer Science 59(3), pp. 317–325,
doi:10.1016/0304-3975(88)90149-1.

[19] Aaron Stump (2016): Verified Functional Programming in Agda. Association for Computing Machinery and
Morgan & Claypool, doi:10.1145/2841316.

[20] William W. Tait (1967): Intensional Interpretations of Functionals of Finite Type I. The Journal of Symbolic
Logic 32(2), pp. 198–212, doi:10.2307/2271658.

[21] Álvaro Tasistro, Ernesto Copello & Nora Szasz (2015): Formalisation in Constructive Type Theory of
Stoughton’s Substitution for the Lambda Calculus. In Mauricio Ayala-Rincón & Ian Mackie, editors: Proc.
LSFA ’14, ENTCS 312, Elsevier, pp. 215–230, doi:10.1016/j.entcs.2015.04.013.

[22] The Agda development team (2011): The Agda standard library. Available at https://github.com/agda/
agda-stdlib.

[23] Christian Urban, Andrew M. Pitts & Murdoch J. Gabbay (2004): Nominal unification. Theoretical Computer
Science 323(1), pp. 473–497, doi:10.1016/j.tcs.2004.06.016.

[24] Sebastián Urciuoli, Álvaro Tasistro & Nora Szasz (2020): Strong Normalization for the Simply-Typed
Lambda Calculus in Constructive Type Theory Using Agda. In Cláudia Nalon & Giselle Reis, editors: Proc.
LSFA ’20, ENTCS 351, Elsevier, pp. 187–203, doi:10.1016/j.entcs.2020.08.010.

[25] Hongwei Xi (2003): Applied type system. In Stefano Berardi, Mario Coppo & Ferruccio Damiani, editors:
Proc. TYPES ’03, LNCS 3085, Springer, pp. 394–408, doi:10.1007/978-3-540-24849-1 25.

https://doi.org/10.1016/0304-3975(88)90149-1
https://doi.org/10.1145/2841316
https://doi.org/10.2307/2271658
https://doi.org/10.1016/j.entcs.2015.04.013
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.1016/j.entcs.2020.08.010
https://doi.org/10.1007/978-3-540-24849-1_25

	Introduction
	The -calculus
	Type System G
	Future Work
	Introduction
	Horizontal Compression HC
	Primary Definitions
	The Horizontal Compression Algorithm and Rules
	The Preservation of Soundness of the Compression Rules

	Formalization in Lean
	Type Definitions
	Proving the Main Theorem

	Formal Proofs and Interactive Theorem Proving in Lean
	Conclusion
	Introduction
	Paraconsistent labelled transition systems
	Simulation and Bisimulation for PLTS
	New PLTS from old
	An application to quantum circuit optimization
	Conclusions and future work
	Introduction
	Related work
	Background
	The Reo modelling language

	A ReLo Primer
	Axiomatic System
	Completeness

	Conclusions and Further Work
	Introduction
	Preliminaries
	Tuple Interpretations
	Types as Cost–Size Products
	Cost–Size Tuple Algebras
	Compatibility Theorem

	Polynomial Bounds for Innermost Runtime Complexity
	Additive Tuple Interpretations
	Cost-Bounded Tuple Interpretations

	Automation
	Conclusion
	Introduction
	Preliminaries
	Superposition with Strings
	Inference Rules
	Lifting Properties

	Redundancy and Contraction Techniques
	Refutational Completeness
	Conditional Completion
	Related Work
	Conclusion
	Introduction
	Fundamentals of Nominal Sets
	Our Formalization in Agda
	Conclusion
	Interval dL
	The idDL2dDL tool
	Discussion and conclusion
	Introduction
	The Framework
	Substitution
	Alpha-conversion
	Reduction
	Strongly normalizing terms
	Reducibile terms

	STLC
	The Strong Normalization Theorem in STLC

	System T
	The Strong Normalization Theorem in System T
	Recursion

	Related work
	Conclusions

